Fully-Decoupled and Second-Order Time-Accurate Scheme for the Cahn–Hilliard Ohta–Kawaski Phase-Field Model of Diblock Copolymer Melt Confined in Hele–Shaw Cell

Junying Cao , Jun Zhang , Xiaofeng Yang

Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (3) : 479 -504.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (3) : 479 -504. DOI: 10.1007/s40304-022-00298-3
Article

Fully-Decoupled and Second-Order Time-Accurate Scheme for the Cahn–Hilliard Ohta–Kawaski Phase-Field Model of Diblock Copolymer Melt Confined in Hele–Shaw Cell

Author information +
History +
PDF

Abstract

In this work, we consider numerical approximations of the phase-field model of diblock copolymer melt confined in Hele–Shaw cell, which is a very complicated coupled nonlinear system consisting of the Darcy equations and the Cahn–Hilliard type equations with the Ohta–Kawaski potential. Through the combination of a novel explicit-Invariant Energy Quadratization approach and the projection method, we develop the first full decoupling, energy stable, and second-order time-accurate numerical scheme. The introduction of two auxiliary variables and the design of two auxiliary ODEs play a vital role in obtaining the full decoupling structure while maintaining energy stability. The scheme is also linear and unconditional energy stable, and the practical implementation efficiency is also very high because it only needs to solve a few elliptic equations with constant coefficients at each time step. We strictly prove that the scheme satisfies the unconditional energy stability and give a detailed implementation process. Numerical experiments further verify the convergence rate, energy stability, and effectiveness of the developed algorithm.

Keywords

Phase-field / Explicit-IEQ / Darcy / Decoupled / Energy Stability / Diblock copolymer melt

Cite this article

Download citation ▾
Junying Cao, Jun Zhang, Xiaofeng Yang. Fully-Decoupled and Second-Order Time-Accurate Scheme for the Cahn–Hilliard Ohta–Kawaski Phase-Field Model of Diblock Copolymer Melt Confined in Hele–Shaw Cell. Communications in Mathematics and Statistics, 2022, 12(3): 479-504 DOI:10.1007/s40304-022-00298-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Álvarez-Lacalle E, Ortín J, Casademunt J. Low viscosity contrast fingering in a rotating Hele–Shaw cell. Phys. Fluids. 2004, 16 908-924

[2]

Bischofberger I, Ramachandran R, Nagel SR. An island of stability in a sea of fingers: emergent global features of the viscous-flow instability. Soft Matter. 2015, 11 7428-7432

[3]

Brazovskii SA. Phase transition of an isotropic system to a nonuniform state. JETP. 1975, 41 1 85

[4]

Buka A, Palffy-Muhoray P, Rácz Z. Viscous fingering in liquid crystals. Phys. Rev. A. 1987, 36 3984-3989

[5]

Carrillo LL, Magdaleno FX, Casademunt J, Ortín J. Experiments in a rotating Hele–Shaw cell. Phys. Rev. E. 1996, 54 6260-6267

[6]

Chen C, Yang X. Efficient numerical scheme for a dendritic solidification phase field model with melt convection. J. Comput. Phys.. 2019, 388 41-62

[7]

Chen C, Yang X. Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn–Hilliard Model. Comput. Meth. Appl. Mech. Eng.. 2019, 351 35-59

[8]

Chen C, Zhang J, Yang X. Efficient numerical scheme for a new hydrodynamics-coupled conserved Allen–Cahn type Ohta–Kawaski phase-field model for Diblock Copolymer Melt. Compt. Phys. Commun.. 2020, 256 107418

[9]

Chen C-Y, Huang Y-S, Miranda JA. Diffuse-interface approach to rotating Hele–Shaw flows. Phys. Rev. E. 2011, 84 046302

[10]

Chen J-D. Growth of radial viscous fingers in a Hele–Shaw cell. J. Fluid Mech.. 1989, 201 223-242

[11]

Cheng K, Wang C, Wise SM. An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Commun. Comput. Phys.. 2019, 26 1335-1364

[12]

Cheng Q, Yang X, Shen J. Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model. J. Comp. Phys.. 2017, 341 44-60

[13]

Choksi R, Peletier MA, Williams JF. On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn–Hilliard functional. SIAM J. Appl. Math.. 2009, 69 1712-1738

[14]

Choksi R, Ren X. On the derivation of a density functional theory for microphase separation of diblock copolymers. J. Stat. Phys.. 2003, 113 151-176

[15]

Chui JYY, de Anna P, Juanes R. Interface evolution during radial miscible viscous fingering. Phys. Rev. E. 2015, 92

[16]

Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. SIAM Rev. (2021) (in press)

[17]

Du Q, Nicolaides RA. Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal.. 1991, 28 1310-1322

[18]

Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998), Volume 529 of Mater. Res. Soc. Sympos. Proc., pp. 39–46. MRS, Warrendale, PA (1998)

[19]

Fredrickson GH. Surface ordering phenomena in block copolymer melts. Macromolecules. 1987, 20 6 2535-2542

[20]

Gomez H, Calo VM, Bazilevs Y, Hughes TJR. Isogeometric analystis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng.. 2008, 197 4333-4352

[21]

Gomez, H., der Zee, V., Kristoffer, G.: Computational phase-field modeling. In: Encyclopedia of Computational Mechanics, 2nd edn. Wiley, ISBN 978-1-119-00379-3 (2017)

[22]

Han D, Wang X. A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys.. 2015, 290 139-156

[23]

Han D, Wang X. Decoupled energy-law preserving numerical schemes for the Cahn–Hilliard–Darcy system. Numer. Methods Partial Differ. Equ.. 2016, 32 3 936-954

[24]

Han D, Wang X. A second order in time, decoupled, unconditionally stable numerical scheme for the Cahn–Hilliard–Darcy system. J. Sci. Comput.. 2018, 14 1210-1233

[25]

Honda T, Kawakatsu T. Hydrodynamic effects on the disorder-to-order transitions of diblock copolymer melts. J. Chem. Phys.. 2008, 129 114904

[26]

Leibler L. Theory of microphase separation in block copolymers. Macromolecules. 1980, 13 6 1602-1617

[27]

Li X, Ju L, Meng X. Convergence analysis of exponential time differencing schemes for the Cahn–Hilliard equation. Commun. Comput. Phys.. 2019, 26 1510-1529

[28]

Li X, Shen J. Error analysis of the SAV-MAC scheme for the Navier–Stokes equations. SIAM J. Numer. Anal.. 2020, 58 2465-2491

[29]

Lin L, Yang Z, Dong S. Numerical approximation of incompressible Navier–Stokes equations based on an auxiliary energy variable. J. Comput. Phys.. 2019, 388 1-22

[30]

Maurits NM, Zvelindovsky AV, Sevink GJA, van Vlimmeren BAC, Fraaije JGEM. Hydrodynamic effects in three-dimensional microphase separation of block copolymers: dynamic mean-field density functional approach. J. Chem. Phys.. 1998, 108 9150

[31]

Nishiura Y, Ohnishi I. Some mathematical aspects of the micro-phase separation in diblock copolymers. Phys. D. 1995, 84 31-39

[32]

Ohnishi I, Nishiura Y, Imai M, Matsushita Y. Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term. Chaos. 1999, 9 329-341

[33]

Ohta T, Kawasaki K. Equilibrium morphology of block copolymer melts. Macromolecules. 1986, 19 10 2621-2632

[34]

Romero I. Thermodynamically consistent time stepping algorithms for nonlinear thermomechanical systems. Int. J. Numer. Methods Eng.. 2009, 79 706-732

[35]

Saffman PG, Taylor G. The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A. 1958, 245 312-329

[36]

Shen J, Wang C, Wang S, Wang X. Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal.. 2012, 50 105-125

[37]

Shen J, Xu J, Yang J. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev.. 2019, 61 474-506

[38]

Shen J, Xue J, Yang J. The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys.. 2018, 353 407-416

[39]

Shen J, Yang X. Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn.. 2010, 28 1669-1691

[40]

Shen J, Yang X. Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal.. 2015, 53 1 279-296

[41]

Shen J, Yang X. The IEQ and SAV approaches and their extensions for a class of highly nonlinear gradient flow systems. Contemp. Math.. 2020, 754 217-245

[42]

Tóth-Katona T, Buka Á. Nematic-liquid-crystal-air interface in a radial Hele–Shaw cell: electric field effects. Phys. Rev. E. 2003, 67 041717

[43]

Tsuzuki R, Li Q, Nagatsu Y, Chen C-Y. Numerical study of immiscible viscous fingering in chemically reactive Hele–Shaw flows: production of surfactants. Phys. Rev. Fluids. 2019, 4 104003

[44]

Wang L, Yu H. On efficient second order stabilized semi-implicit schemes for the Cahn–Hilliard phase-field equation. J. Sci. Comput.. 2018, 77 1185-1209

[45]

Wise SM, Wang C, Lowengrub JS. An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal.. 2009, 47 3 2269-2288

[46]

Wu X-F, Dzenis YA. Phase-field modeling of the formation of lamellar nanostructures in diblock copolymer thin films under inplanar electric fields. Phys. Rev. E. 2008, 77 3

[47]

Xu T, Zvelindovsky AV, Sevink G, Gang O, Ocko B, Zhu Y, Gido SP, Russell TP. Electric field induced sphere-to-cylinder transition in diblock copolymer thin films. Macromolecules. 2004, 37 18 6980-6984

[48]

Yang X. Linear, first and second order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys.. 2016, 327 294-316

[49]

Yang X. Efficient Linear, stabilized, second order time marching schemes for an anisotropic phase field dendritic crystal growth model. Comput. Methods Appl. Mech. Eng.. 2019, 347 316-339

[50]

Yang X. A new efficient Fully-decoupled and Second-order time-accurate scheme for Cahn–Hilliard phase-field model of three-phase incompressible flow. Comput. Methods Appl. Mech. Eng.. 2021, 376 13589

[51]

Yang X. A novel fully-decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier–Stokes equations coupled with mass-conserved Allen–Cahn phase-field model of two-phase incompressible flow. Int. J. Numer. Methods Eng.. 2021, 122 1283-1306

[52]

Yang X. A novel fully-decoupled, second-order and energy stable numerical scheme of the conserved Allen–Cahn type flow-coupled binary surfactant model. Comput. Methods Appl. Mech. Eng.. 2021, 373 113502

[53]

Yang X. A novel fully-decoupled, second-order time-accurate, unconditionally energy stable scheme for a flow-coupled volume-conserved phase-field elastic bending energy model. J. Comput. Phys.. 2021, 432 110015

[54]

Yang X. Numerical approximations of the Navier–Stokes equation coupled with volume-conserved multi-phase-field vesicles system: fully-decoupled, linear, unconditionally energy stable and second-order time-accurate numerical scheme. Comput. Methods Appl. Mech. Eng.. 2021, 375 113600

[55]

Yang X, He X. A fully-discrete decoupled finite element method for the conserved Allen–Cahn type phase-field model of three-phase fluid flow system. Comput. Methods Appl. Mech. Eng.. 2022, 389 114376

[56]

Yang X, Yu H. Efficient second order unconditionally stable schemes for a phase field moving contact line model using an invariant energy quadratization approach. SIAM J. Sci. Comput.. 2018, 40 B889-B914

[57]

Yang X, Zhao J, Wang Q, Shen J. Numerical approximations for a three components Cahn–Hilliard phase-field model based on the invariant energy quadratization method. M3AS Math. Models Methods Appl. Sci.. 2017, 27 1993-2030

[58]

Yang Z, Dong S. An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices. J. Comput. Phys.. 2018, 393 229-257

[59]

Yu H, Yang X. Decoupled energy stable schemes for phase field model with contact lines and variable densities. J. Comput. Phys.. 2017, 334 665-686

[60]

Wang C, Hu Z, Wise SM, Lowengrub JS. Stable and efficient finite difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys.. 2009, 228 5323-5339

[61]

Zhang G-D, He X, Yang X. A fully decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible MHD equations. J. Comput. Phys.. 2022, 448

[62]

Zhang J, Yang X. Unconditionally energy stable large time stepping method for the L2-gradient flow based ternary phase-field model with precise nonlocal volume conservation. Comput. Methods Appl. Mech. Eng.. 2020, 361

[63]

Zhang X, Douglas JF, Jones RL. Influence of film casting method on block copolymer ordering in thin films. Soft Matter. 2012, 8 4980-4986

Funding

National Science Foundation(2012490)

AI Summary AI Mindmap
PDF

300

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/