Functional Shige Peng’s Central Limit Theorems for Martingale Vectors

Li-Xin Zhang

Communications in Mathematics and Statistics ›› 2023, Vol. 12 ›› Issue (2) : 357-383. DOI: 10.1007/s40304-022-00294-7
Article

Functional Shige Peng’s Central Limit Theorems for Martingale Vectors

Author information +
History +

Abstract

In this paper, the functional central limit theorem is established for martingale like random vectors under the framework sub-linear expectations introduced by Shige Peng. As applications, the Lindeberg central limit theorem for independent random vectors is established, the sufficient and necessary conditions of the central limit theorem for independent and identically distributed random vectors are found, and a Lévy’s characterization of a multi-dimensional G-Brownian motion is obtained.

Keywords

Random vector / Central limit theorem / Functional central limit theorem / Martingale difference / Sub-linear expectation

Cite this article

Download citation ▾
Li-Xin Zhang. Functional Shige Peng’s Central Limit Theorems for Martingale Vectors. Communications in Mathematics and Statistics, 2023, 12(2): 357‒383 https://doi.org/10.1007/s40304-022-00294-7

References

[1.]
Billingsley P. . Convergence of Probability Measures, 1968 New York Wiley
[2.]
Denis L, Hu M, Peng S. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes. Potential Anal., 2011, 34: 139-161,
CrossRef Google scholar
[3.]
Guo X, Pan C, Peng S. Martingale problem under nonlinear expectations. Math. Financ. Econ., 2018, 12: 135-164,
CrossRef Google scholar
[4.]
Hu, M.S., Li, X.J., Liu, G.M.: Lévys martingale characterization and reflection principle of G-Brownian motion (preprint) (2018). arXiv:1805.11370v1
[5.]
Krylov NV. On Shige Peng’s central limit theorem. Stoch. Process. Appl., 2020, 130(3): 1426-1434,
CrossRef Google scholar
[6.]
Lin Q. General martingale characterization of G-Brownian motion. Stoch. Anal. Appl., 2013, 31: 1024-1048,
CrossRef Google scholar
[7.]
Peng, S.: G-Brownian motion and dynamic risk measure under volatility uncertainty (preprint) (2007). arXiv:0711.2834v1
[8.]
Peng S. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stoch. Process. Appl., 2008, 118: 2223-2253,
CrossRef Google scholar
[9.]
Peng, S.: A new central limit theorem under sublinear expectations (preprint) (2008b). arXiv:0803.2656v1
[10.]
Peng, S.G.: Nonlinear expectations and stochastic calculus under uncertainty: with robust CLT and G-Brownian motion. In: Probability Theory and Stochastic Modelling vol. 95, Springer (2019a). https://doi.org/10.1007/978-3-662-59903-7
[11.]
Peng S. Law of large numbers and central limit theorem under nonlinear expectations. Probab. Uncertain. Quant. Risk, 2019, 4: 1-8,
CrossRef Google scholar
[12.]
Xu J, Zhang B. Martingale characterization of G-Brownian motion. Stoch. Process. Appl., 2009, 119: 232-248,
CrossRef Google scholar
[13.]
Xu J, Zhang B. Martingale property and capacity under G-Framework. Elect. J. Probab., 2010, 15: 2041-2068
[14.]
Zhang L-X. Rosenthal’s inequalities for independent and negatively dependent random variables under sub-linear expectations with applications. Sci. China Math., 2016, 59(4): 751-768,
CrossRef Google scholar
[15.]
Zhang L-X. The convergence of the sums of independent random variables under the sub-linear expectations. Acta Mathematica Sinica, 2020, 36(3): 224-244,
CrossRef Google scholar
[16.]
Zhang L-X. Lindeberg’s central limit theorems for martingale like sequences under sub-linear expectations. Sci. China Math., 2021, 64(6): 1263-1290,
CrossRef Google scholar
Funding
National Natural Science Foundation of China(12031005); Fundamental Research Funds for the Central Universities; Natural Science Foundation of Zhejiang Province(LZ21A010002)

Accesses

Citations

Detail

Sections
Recommended

/