Katok’s Entropy Formula of Unstable Metric Entropy for Partially Hyperbolic Diffeomorphisms

Ping Huang, Chenwei Wang, Ercai Chen

Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (2) : 339-355. DOI: 10.1007/s40304-022-00293-8
Article

Katok’s Entropy Formula of Unstable Metric Entropy for Partially Hyperbolic Diffeomorphisms

Author information +
History +

Abstract

Katok’s entropy formula is an important formula in entropy theory. It plays significant roles in large deviation theories, multifractal analysis, quantitative recurrence and so on. This paper is devoted to establishing Katok’s entropy formula of unstable metric entropy which is the entropy caused by the unstable part of partially hyperbolic systems. We also construct a similar formula which can be used to study the quantitative recurrence in the unstable manifold for partially hyperbolic diffeomorphisms.

Keywords

Katok’s entropy formula / Unstable metric entropy / Measure decomposition / Partially hyperbolic diffeomorphisms

Cite this article

Download citation ▾
Ping Huang, Chenwei Wang, Ercai Chen. Katok’s Entropy Formula of Unstable Metric Entropy for Partially Hyperbolic Diffeomorphisms. Communications in Mathematics and Statistics, 2022, 12(2): 339‒355 https://doi.org/10.1007/s40304-022-00293-8

References

[1.]
Bowen R. Topological entropy for noncompact sets. Trans. Am. Math. Soc., 1973, 184: 125-136,
CrossRef Google scholar
[2.]
Cao Y, Hu H, Zhao Y. Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic Measure. Ergod. Theory Dyn. Syst., 2013, 33(3): 831-850,
CrossRef Google scholar
[3.]
Cheng W, Zhao Y, Cao Y. Pressures for asymptotically sub-additive potentials under a mistake function. Discrete Contin. Dyn. Syst. A, 2013, 32(2): 487-497,
CrossRef Google scholar
[4.]
Furstenberg H. . Reccurence in ergodic theory and combinatorial number theory, 1981 Princeton, New Jersey Princeton University Press,
CrossRef Google scholar
[5.]
Hasselblatt B, Katok A. . Principal structures, Handbook of dynamical systems, 2002 Amsterdam North-Holland 1-203
[6.]
He L, Lv J, Zhou L. Definition of measure-theoretic pressure using spanning sets. Acta Math. Sinica, Engl. Ser., 2004, 20(4): 709-718,
CrossRef Google scholar
[7.]
Hu H, Hua Y, Wu W. Unstable entropies and variational principle for partially hyperbolic diffeomorphisms. Adv. Math., 2017, 321: 31-68,
CrossRef Google scholar
[8.]
Hu H, Wu W, Zhu Y. Unstable pressure and u-equilibrium states for partially hyperbolic diffeomorphisms. Ergod. Theory Dyn. Syst., 2020, 41(11): 1-27
[9.]
Hua Y, Saghin R, Xia Z. Topological entropy and partially hyperbolic diffeomorphisms. Ergod. Theory Dyn. Syst., 2008, 28(3): 843-862,
CrossRef Google scholar
[10.]
Huang P, Chen E, Wang C. Entropy formulae of conditional entropy in mean metrics. Discrete Contin. Dyn. Syst. Ser. A, 2018, 38(10): 5129-5144,
CrossRef Google scholar
[11.]
Huang P, Wang C. Measure-theoretic pressure and topological pressure in mean metrics. Dyn. Syst., 2019, 34(2): 259-273,
CrossRef Google scholar
[12.]
Huang W, Wang Z, Ye X. Measure complexity and M o ¨ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\rm {o}}$$\end{document}bius disjointness. Adv. Math., 2019, 347: 827-858,
CrossRef Google scholar
[13.]
Katok A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. IHES, 1980, 51: 137-173,
CrossRef Google scholar
[14.]
Ledrappier F, Young L. The metric entropy of diffeomorphisms: part II: relations between entropy, exponents and dimension. Annal. Math., 1985,
CrossRef Google scholar
[15.]
Pesin Y, Pitskel’ B. Topological pressure and the variational principle for noncompact sets. Funct. Anal. Appl., 1984, 18: 307-318,
CrossRef Google scholar
[16.]
Tian, X. and Wu, W.: Unstable entropies and dimension theory of partially hyperbolic systems, arXiv:1811.03797v1
[17.]
Wang X, Wu W, Zhu Y. Unstable entropy and unstable pressure for random partially hyberbolic dynamical systems. Stoch. Dyn., 2020, 21(5): 2150021,
CrossRef Google scholar
[18.]
Wu W. Local unstable entropies of partially hyperbolic diffeomorphisms. Ergod. Theory Dyn. Syst., 2019, 40(8): 1-31
[19.]
Zhao Y, Cao Y. Measure-theoretic pressure for subadditive potentials. Nonlinear Anal., 2009, 70: 2237-2247,
CrossRef Google scholar
[20.]
Zheng D, Chen E, Yang J. On large deviations for amenable group actions. Discrete Contin. Dyn. Syst. Ser. A, 2017, 36(12): 7191-7206,
CrossRef Google scholar
[21.]
Zhu Y. Two notes on measure-theoretic entropy of random dynamic systems. Acta Math. Sin., 2009, 25: 961-970,
CrossRef Google scholar
Funding
National Natural Science Foundation of China(12101446)

Accesses

Citations

Detail

Sections
Recommended

/