Harnack Inequalities for G-SDEs with Multiplicative Noise
Fen-Fen Yang
Harnack Inequalities for G-SDEs with Multiplicative Noise
The Harnack inequality for stochastic differential equation driven by G-Brownian motion with multiplicative noise is derived by means of the coupling by change of measure, which extends the corresponding results derived in Wang (Probab. Theory Related Fields 109:417–424) under the linear expectation. Moreover, we generalize the gradient estimate under nonlinear expectation appeared in Song (Sci. China Math. 64:1093–1108).
Harnack inequality / Gradient estimate / Multiplicative noise / G-Brownian motion / SDEs
[1.] |
|
[2.] |
Cohen,S., Ji,S., Peng,S.: Sublinear expectations and Martingales in discrete time. (2011). arXiv:1104.5390
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
Huang,X., Yang,F.-F.: Harnack inequality and gradient estimate for G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-SDEs with degenerate noise, Sci. China Math. (2021). https://doi.org/10.1007/s11425-020-1784-0
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
Peng,S.: G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-Brownian motion and dynamic risk measures under volatility uncertainty, (2007) arXiv:0711.2834v1
|
[11.] |
Peng, S.: G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-expectation, G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-Brownian motion and related stochastic calculus of Itô type, in: Stochastic Analysis and Applications, in: Abel Symp., vol. 2, Springer, Berlin, (2007), pp.541–567
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
Wang,F.-Y.: Harnack inequalities for stochastic partial differential equations, Springer Briefs in Mathematics, Springer, New York, (2013), pp, ISBN: 978–1–4614–7933-8, 978–1–4614–7934–5
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
/
〈 | 〉 |