Harnack Inequalities for G-SDEs with Multiplicative Noise

Fen-Fen Yang

Communications in Mathematics and Statistics ›› 2023, Vol. 12 ›› Issue (2) : 279-305. DOI: 10.1007/s40304-022-00290-x
Article

Harnack Inequalities for G-SDEs with Multiplicative Noise

Author information +
History +

Abstract

The Harnack inequality for stochastic differential equation driven by G-Brownian motion with multiplicative noise is derived by means of the coupling by change of measure, which extends the corresponding results derived in Wang (Probab. Theory Related Fields 109:417–424) under the linear expectation. Moreover, we generalize the gradient estimate under nonlinear expectation appeared in Song (Sci. China Math. 64:1093–1108).

Keywords

Harnack inequality / Gradient estimate / Multiplicative noise / G-Brownian motion / SDEs

Cite this article

Download citation ▾
Fen-Fen Yang. Harnack Inequalities for G-SDEs with Multiplicative Noise. Communications in Mathematics and Statistics, 2023, 12(2): 279‒305 https://doi.org/10.1007/s40304-022-00290-x

References

[1.]
Bao J, Wang F-Y, Yuan C. Derivative formula and Harnack inequality for degenerate functionals SDEs. Stoch. Dyn., 2013, 13: 1-22,
CrossRef Google scholar
[2.]
Cohen,S., Ji,S., Peng,S.: Sublinear expectations and Martingales in discrete time. (2011). arXiv:1104.5390
[3.]
Denis L, Hu M, Peng S. Function spaces and capacity related to a sublinear expectation: application to G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-Brownian motion pathes. Potential Anal., 2011, 34: 139-161,
CrossRef Google scholar
[4.]
Hu M, Ji S, Peng S, Song Y. Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-Brownian motion. Stoch. Process. Appl., 2014, 124: 1170-1195,
CrossRef Google scholar
[5.]
Hu M, Wang F, Zheng G. Quasi-continuous random variables and processes under the G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-expectation framework. Stoch. Process. Appl., 2016, 126: 2367-2387,
CrossRef Google scholar
[6.]
Huang,X., Yang,F.-F.: Harnack inequality and gradient estimate for G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-SDEs with degenerate noise, Sci. China Math. (2021). https://doi.org/10.1007/s11425-020-1784-0
[7.]
Li X, Peng S. Stopping times and related Itô’s calculus with G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-Brownian motion. Stoch. Process. Appl., 2011, 121: 1492-1508,
CrossRef Google scholar
[8.]
Liu G. Exit times for semimartingales under nonlinear expectation. Stochastic Process. Appl., 2020, 130: 7338-7362,
CrossRef Google scholar
[9.]
Osuka E. Girsanov’s formula for G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-Brownian motion. Stoch. Process. Appl., 2013, 123: 1301-1318,
CrossRef Google scholar
[10.]
Peng,S.: G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-Brownian motion and dynamic risk measures under volatility uncertainty, (2007) arXiv:0711.2834v1
[11.]
Peng, S.: G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-expectation, G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-Brownian motion and related stochastic calculus of Itô type, in: Stochastic Analysis and Applications, in: Abel Symp., vol. 2, Springer, Berlin, (2007), pp.541–567
[12.]
Peng S. . Nonlinear expectations and stochastic calculus under uncertainty with robust CLT and G-Brownian motion, Probability Theory and Stochastic Modelling, 2019 Berlin Springer
[13.]
Ren P, Yang F-F. Path independence of additive functionals for stochastic differential equations under G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-framework. Front. Math. China, 2019, 14: 135-148,
CrossRef Google scholar
[14.]
Song Y. Gradient estimates for nonlinear diffusion semigroups by coupling methods. Sci. China Math., 2021, 64: 1093-1108,
CrossRef Google scholar
[15.]
Song Y. Properties of hitting times for G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-martingales and their applications. Stoch. Process. Appl., 2011, 121: 1770-1784,
CrossRef Google scholar
[16.]
Song Y. Some properties on G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-evaluation and it’s applications to G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-martingale decomposition. Sci. China Math., 2011, 54: 287-300,
CrossRef Google scholar
[17.]
Wang F-Y. Estimates for invariant probability measures of degenerate SPDEs with singular and path-dependent drifts. Probab. Theory Related Fields, 2018, 172: 1181-1214,
CrossRef Google scholar
[18.]
Wang,F.-Y.: Harnack inequalities for stochastic partial differential equations, Springer Briefs in Mathematics, Springer, New York, (2013), pp, ISBN: 978–1–4614–7933-8, 978–1–4614–7934–5
[19.]
Wang F-Y. Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on nonconvex manifolds, (English summary). Ann. Probab., 2011, 39: 1449-1467,
CrossRef Google scholar
[20.]
Wang F-Y. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Related Fields, 1997, 109: 417-424,
CrossRef Google scholar
[21.]
Xu J, Shang H, Zhang B. A Girsanov type theorem under G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-framework. Stoch. Anal. Appl., 2011, 29: 386-406,
CrossRef Google scholar
[22.]
Yang F-F. Harnack inequality and applications for SDEs driven by G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}-Brownian motion. Acta Math. Appl. Sin. Engl. Ser., 2020, 36: 1-9,
CrossRef Google scholar
Funding
Young Scientists Fund(11801406)

Accesses

Citations

Detail

Sections
Recommended

/