Relative Time-Restricted Sensitivity and Entropy

Xiaochen Wang , Xiaomin Zhou

Communications in Mathematics and Statistics ›› 2023, Vol. 12 ›› Issue (2) : 265 -277.

PDF
Communications in Mathematics and Statistics ›› 2023, Vol. 12 ›› Issue (2) : 265 -277. DOI: 10.1007/s40304-022-00289-4
Article

Relative Time-Restricted Sensitivity and Entropy

Author information +
History +
PDF

Abstract

In this paper, we consider relativization of measure-theoretical- restricted sensitivity. For a given topological dynamical system, we define conditional measure-theoretical-restricted asymptotic rate with respect to sensitivity and obtain that it equals to the reciprocal of the Brin–Katok local entropy for almost every point under the conditional measure.

Keywords

Relative time-restricted sensitivity / Asymptotic rate / Local entropy

Cite this article

Download citation ▾
Xiaochen Wang, Xiaomin Zhou. Relative Time-Restricted Sensitivity and Entropy. Communications in Mathematics and Statistics, 2023, 12(2): 265-277 DOI:10.1007/s40304-022-00289-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aiello D, Diao H, Fan Z, King DO, Lin J, Silva CE. Measurable time-restricted sensitivity. Nonlinearity. 2012, 25 12 3313-3325

[2]

Auslander J, Yorke JA. Interval maps, factors of maps, and chaos. Tôhoku Math. J. (2). 1980, 32 2 177-188

[3]

Brin, M., Katok, A.: On local entropy, Geometric dynamics (Rio de Janeiro, 1981). In: Lecture Notes in Math., vol. 1007, pp. 30–38. Springer, Berlin (1983)

[4]

Feng D, Huang W. Variational principles for topological entropies of subsets. J. Funct. Anal.. 2012, 263 8 2228-2254

[5]

García-Ramos F. Weak forms of topological and measure-theoretical equicontinuity: relationships with discrete spectrum and sequence entropy. Ergod. Theory Dyn. Syst.. 2017, 37 4 1211-1237

[6]

Glasner E, Weiss B. Sensitive dependence on initial conditions. Nonlinearity. 1993, 6 6 1067-1075

[7]

Grigoriev I, Ince N, Iordan MC, Lubin A, Silva CE. On $\mu $-compatible metrics and measurable sensitivity. Colloq. Math.. 2012, 126 53-72

[8]

Guckenheimer J. Sensitive dependence to initial conditions for one-dimensional maps. Commun. Math. Phys.. 1979, 70 2 133-160

[9]

Hallett J, Manuelli L, Silva CE. On Li–Yorke measurable sensitivity. Proc. Am. Math. Soc.. 2015, 143 2411-2426

[10]

Huang W, Khilko D, Kolyada S, Peris A, Zhang G. Finite intersection property and dynamical compactness. J. Dyn. Differ. Equ.. 2018, 30 3 1221-1245

[11]

Huang W, Khilko D, Kolyada S, Zhang G. Dynamical compactness and sensitivity. J. Differ. Equ.. 2016, 260 9 6800-6827

[12]

Huang W, Kolyada S, Zhang G. Analogues of Auslander–Yorke theorems for multi-sensitivity. Ergod. Theory Dyn. Syst.. 2018, 38 2 651-665

[13]

Huang W, Lu P, Ye X. Measure-theoretical sensitivity and equicontinuity. Israel J. Math.. 2011, 183 233-283

[14]

James J, Koberda T, Lindsey K, Silva CE, Speh P. Measurable sensitivity. Proc. Am. Math. Soc.. 2008, 136 10 3549-3559

[15]

Li J. Measure-theoretic sensitivity via finite partitions. Nonlinearity. 2016, 29 7 2133-2144

[16]

Liu H, Liao L, Wang L. Thickly syndetical sensitivity of topological dynamical system. Discrete Dyn. Nat. Soc.. 2014, Art. ID 583431 4 pp

[17]

Liu K, Xu L, Zhang R. Time-restricted sensitivity and entropy. J. Differ. Equ.. 2021, 293 70-85

[18]

Moothathu TKS. Stronger forms of sensitivity for dynamical systems. Nonlinearity. 2007, 20 9 2115-2126

[19]

Ruelle, D.: Dynamical system with turbulent behavior, Mathematical problems in theoretical physics. In: Proc. Internat. Conf., Univ. Rome, Rome, 1997, Lecture Notes in Phys., vol. 80, pp. 341–360. Springer, Berlin (1978)

[20]

Ye X, Yu T. Sensitivity, proximal extension and higher order almost automorphy. Trans. Am. Math. Soc.. 2018, 370 5 3639-3662

[21]

Zhou X. A formula of conditonal entropy and some applications. Discrete Contin. Dyn. Syst.. 2016, 36 7 4063-4075

Funding

National Natural Science Foundation of China(11801193)

Fundamental Research Funds for the Central Universities(2020kfyXJJS036)

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/