Relative Time-Restricted Sensitivity and Entropy

Xiaochen Wang, Xiaomin Zhou

Communications in Mathematics and Statistics ›› 2023, Vol. 12 ›› Issue (2) : 265-277. DOI: 10.1007/s40304-022-00289-4
Article

Relative Time-Restricted Sensitivity and Entropy

Author information +
History +

Abstract

In this paper, we consider relativization of measure-theoretical- restricted sensitivity. For a given topological dynamical system, we define conditional measure-theoretical-restricted asymptotic rate with respect to sensitivity and obtain that it equals to the reciprocal of the Brin–Katok local entropy for almost every point under the conditional measure.

Keywords

Relative time-restricted sensitivity / Asymptotic rate / Local entropy

Cite this article

Download citation ▾
Xiaochen Wang, Xiaomin Zhou. Relative Time-Restricted Sensitivity and Entropy. Communications in Mathematics and Statistics, 2023, 12(2): 265‒277 https://doi.org/10.1007/s40304-022-00289-4

References

[1.]
Aiello D, Diao H, Fan Z, King DO, Lin J, Silva CE. Measurable time-restricted sensitivity. Nonlinearity, 2012, 25(12): 3313-3325,
CrossRef Google scholar
[2.]
Auslander J, Yorke JA. Interval maps, factors of maps, and chaos. Tôhoku Math. J. (2), 1980, 32(2): 177-188,
CrossRef Google scholar
[3.]
Brin, M., Katok, A.: On local entropy, Geometric dynamics (Rio de Janeiro, 1981). In: Lecture Notes in Math., vol. 1007, pp. 30–38. Springer, Berlin (1983)
[4.]
Feng D, Huang W. Variational principles for topological entropies of subsets. J. Funct. Anal., 2012, 263(8): 2228-2254,
CrossRef Google scholar
[5.]
García-Ramos F. Weak forms of topological and measure-theoretical equicontinuity: relationships with discrete spectrum and sequence entropy. Ergod. Theory Dyn. Syst., 2017, 37(4): 1211-1237,
CrossRef Google scholar
[6.]
Glasner E, Weiss B. Sensitive dependence on initial conditions. Nonlinearity, 1993, 6(6): 1067-1075,
CrossRef Google scholar
[7.]
Grigoriev I, Ince N, Iordan MC, Lubin A, Silva CE. On μ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-compatible metrics and measurable sensitivity. Colloq. Math., 2012, 126: 53-72,
CrossRef Google scholar
[8.]
Guckenheimer J. Sensitive dependence to initial conditions for one-dimensional maps. Commun. Math. Phys., 1979, 70(2): 133-160,
CrossRef Google scholar
[9.]
Hallett J, Manuelli L, Silva CE. On Li–Yorke measurable sensitivity. Proc. Am. Math. Soc., 2015, 143: 2411-2426,
CrossRef Google scholar
[10.]
Huang W, Khilko D, Kolyada S, Peris A, Zhang G. Finite intersection property and dynamical compactness. J. Dyn. Differ. Equ., 2018, 30(3): 1221-1245,
CrossRef Google scholar
[11.]
Huang W, Khilko D, Kolyada S, Zhang G. Dynamical compactness and sensitivity. J. Differ. Equ., 2016, 260(9): 6800-6827,
CrossRef Google scholar
[12.]
Huang W, Kolyada S, Zhang G. Analogues of Auslander–Yorke theorems for multi-sensitivity. Ergod. Theory Dyn. Syst., 2018, 38(2): 651-665,
CrossRef Google scholar
[13.]
Huang W, Lu P, Ye X. Measure-theoretical sensitivity and equicontinuity. Israel J. Math., 2011, 183: 233-283,
CrossRef Google scholar
[14.]
James J, Koberda T, Lindsey K, Silva CE, Speh P. Measurable sensitivity. Proc. Am. Math. Soc., 2008, 136(10): 3549-3559,
CrossRef Google scholar
[15.]
Li J. Measure-theoretic sensitivity via finite partitions. Nonlinearity, 2016, 29(7): 2133-2144,
CrossRef Google scholar
[16.]
Liu H, Liao L, Wang L. Thickly syndetical sensitivity of topological dynamical system. Discrete Dyn. Nat. Soc., 2014, Art. ID 583431: 4 pp
[17.]
Liu K, Xu L, Zhang R. Time-restricted sensitivity and entropy. J. Differ. Equ., 2021, 293: 70-85,
CrossRef Google scholar
[18.]
Moothathu TKS. Stronger forms of sensitivity for dynamical systems. Nonlinearity, 2007, 20(9): 2115-2126,
CrossRef Google scholar
[19.]
Ruelle, D.: Dynamical system with turbulent behavior, Mathematical problems in theoretical physics. In: Proc. Internat. Conf., Univ. Rome, Rome, 1997, Lecture Notes in Phys., vol. 80, pp. 341–360. Springer, Berlin (1978)
[20.]
Ye X, Yu T. Sensitivity, proximal extension and higher order almost automorphy. Trans. Am. Math. Soc., 2018, 370(5): 3639-3662,
CrossRef Google scholar
[21.]
Zhou X. A formula of conditonal entropy and some applications. Discrete Contin. Dyn. Syst., 2016, 36(7): 4063-4075,
CrossRef Google scholar
Funding
National Natural Science Foundation of China(11801193); Fundamental Research Funds for the Central Universities(2020kfyXJJS036)

Accesses

Citations

Detail

Sections
Recommended

/