Estimations of Bounds on the Multiplicative Fractional Integral Inequalities Having Exponential Kernels

Yu Peng, Hao Fu, Tingsong Du

Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (2) : 187-211. DOI: 10.1007/s40304-022-00285-8
Article

Estimations of Bounds on the Multiplicative Fractional Integral Inequalities Having Exponential Kernels

Author information +
History +

Abstract

To investigate the fractional Hermite–Hadamard-type inequalities, a class of the multiplicative fractional integrals having exponential kernels is introduced. Some estimations of upper bounds for the newly introduced class of integral operators are obtained in terms of the established

differentiable identity. And our results presented in this study are substantial generalizations of previous findings given by Ali et al. (Asian Res J Math 12:1–11, 2019). Three examples are also provided to identify the correctness of the results that occur with the change of the parameter
α
.

Keywords

Hermite–Hadamard-type inequalities / Multiplicative fractional integrals / Multiplicatively convex functions /

Differentiable functions

Cite this article

Download citation ▾
Yu Peng, Hao Fu, Tingsong Du. Estimations of Bounds on the Multiplicative Fractional Integral Inequalities Having Exponential Kernels. Communications in Mathematics and Statistics, 2022, 12(2): 187‒211 https://doi.org/10.1007/s40304-022-00285-8

References

[1.]
Abdeljawad T, Grossman M. On geometric fractional calculus. J. Semigroup Theory Appl., 2016, 2016: 2
[2.]
Abdeljawad T, Mohammed PO, Kashuri A. New modified conformable fractional integral inequalities of Hermite–Hadamard type with applications. J. Funct. Sp., 2020, 2020: 4352357
[3.]
Abramovich S, Persson LE. Fejér and Hermite–Hadamard type inequalities for N \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-quasiconvex functions. Math. Notes, 2017, 102: 599-609,
CrossRef Google scholar
[4.]
Agarwal P. Some inequalities involving Hadamard-type k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-fractional integral operators. Math. Methods Appl. Sci., 2017, 40: 3882-3891,
CrossRef Google scholar
[5.]
Ahmad B, Alsaedi A, Kirane M, Torebek BT. Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math., 2019, 353: 120-129,
CrossRef Google scholar
[6.]
Akkurt A, Kaçar Z, Yildirim H. Generalized fractional integral inequalities for continuous random variables. J. Probab. Stat., 2015, 2015: 1-7,
CrossRef Google scholar
[7.]
Ali MA, Abbas M, Zhang Z, Sial IB, Arif R. On integral inequalities for product and quotient of two multiplicatively convex functions. Asian Res. J. Math., 2019, 12: 1-11,
CrossRef Google scholar
[8.]
Ali MA , Zhang ZY, Budak H, Sarikaya MZ. On Hermite–Hadamard type inequalities for interval-valued multiplicative integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 2020, 69: 1428-1448
[9.]
Ali MA, Budak H, Sarikaya MZ, Zhang ZY. Ostrowski and Simpson type inequalities for multiplicative integrals. Proyecciones (Antofagasta), 2021, 40: 743-763,
CrossRef Google scholar
[10.]
Anastassiou GA. Riemann–Liouville fractional fundamental theorem of calculus and Riemann–Liouville fractional Polya type integral inequality and its extension to Choquet integral setting. Bull. Korean Math. Soc., 2019, 56: 1423-1433
[11.]
Bai YM, Qi F. Some integral inequalities of the Hermite–Hadamard type for log-convex functions on co-ordinates. J. Nonlinear Sci. Appl., 2016, 9: 5900-5908,
CrossRef Google scholar
[12.]
Bakherad M, Kian M, Krnić M, Ahmadi SA. Interpolating Jensen-type operator inequalities for log-convex and superquadratic functions. Filomat, 2018, 13: 4523-4535,
CrossRef Google scholar
[13.]
Bashirov AE, Kurpınar EM, Özyapıcı A. Multiplicative calculus and its applications. J. Math. Anal. Appl., 2008, 337: 36-48,
CrossRef Google scholar
[14.]
Budak H, Özçelik K. On Hermite–Hadamard type inequalities for multiplicative fractional integrals. Miskolc Math. Notes, 2020, 21: 91-99,
CrossRef Google scholar
[15.]
Budak H, Sarikaya MZ, Usta F, Yildirim H. Some Hermite–Hadamard and Ostrowski type inequalities for fractional integral operators with exponential kernel. Acta Comment. Univer. Tartu. Math., 2019, 23: 25-36
[16.]
Butt SI, Akdemir AO, Nasir J, Jarad F. Some Hermite–Jensen–Mercer like inequalities for convex functions through a certain generalized fractional integrals and related results. Miskolc Math. Notes, 2020, 21: 689-715,
CrossRef Google scholar
[17.]
Chen FX. Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput., 2015, 268: 121-128
[18.]
Chen H, Katugampola UN. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl., 2017, 446: 1274-1291,
CrossRef Google scholar
[19.]
Delavar MR, Sen MDL. A mapping associated to h \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-convex version of the Hermite–Hadamard inequality with applications. J. Math. Inequal., 2020, 14: 329-335,
CrossRef Google scholar
[20.]
Dragomir SS. Hermite–Hadamard type inequalities for generalized Riemann–Liouville fractional integrals of h \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-convex functions. Math. Methods Appl. Sci., 2021, 44: 2364-2380,
CrossRef Google scholar
[21.]
Dragomir SS. Further inequalities for log-convex functions related to Hermite–Hadamard result. Proyecc. J. Math., 2019, 38: 267-293
[22.]
Du TS, Awan MU, Kashuri A, Zhao SS. Some k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-fractional extensions of the trapezium inequalities through generalized relative semi- ( m , h ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m, h)$$\end{document}-preinvexity. Appl. Anal., 2021, 100: 642-662,
CrossRef Google scholar
[23.]
Du TS, Wang H, Khan MA, Zhang Y. Certain integral inequalities considering generalized m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-convexity on fractal sets and their applications. Fractals, 2019, 27: 1-17,
CrossRef Google scholar
[24.]
Du TS, Luo CY, Yu B. Certain quantum estimates on the parameterized integral inequalities and their applications. J. Math. Inequal., 2021, 15: 201-228,
CrossRef Google scholar
[25.]
Ekinci A, Özdemir ME. Some new integral inequalities via Riemann–Liouville integral operators. Appl. Comput. Math., 2019, 18: 288-295
[26.]
Fu H, Peng Y, Du TS. Some inequalities for multiplicative tempered fractional integrals involving the λ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-incomplete gamma functions. AIMS Math., 2021, 6: 7456-7478,
CrossRef Google scholar
[27.]
Hwang DY, Dragomir SS. Extensions of the Hermite–Hadamard inequality for r \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-preinvex functions on an invex set. Bull. Aust. Math. Soc., 2017, 95: 412-423,
CrossRef Google scholar
[28.]
İşcan, İ.: Weighted Hermite–Hadamard–Mercer type inequalities for convex functions. Numer. Methods Part. Differ. Equ. 37, 118–130 (2021)
[29.]
Khan MA , Ali T, Dragomir SS, Sarikaya MZ. Hermite–Hadamard type inequalities for conformable fractional integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 2018, 112: 1033-1048,
CrossRef Google scholar
[30.]
Khan, S., Budak, H.: On midpoint and trapezoid type inequalities for multiplicative integrals. Mathematica (Cluj) (in press). http://math.ubbcluj.ro/~mathjour/accepted.html
[31.]
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier (2006)
[32.]
Kunt, M., Karapinar, D., Turhan, S., İsçan, İ.: The left Riemann–Liouville fractional Hermite–Hadamard type inequalities for convex functions. Math. Slovaca 69, 773–784 (2019)
[33.]
Latif MA. On some new inequalities of Hermite-Hadamard type for functions whose derivatives are s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-convex in the second sense in the absolute value. Ukr. Math. J., 2016, 67: 1552-1571,
CrossRef Google scholar
[34.]
Liao JG, Wu SH, Du TS. The Sugeno integral with respect to α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-preinvex functions. Fuzzy Sets Syst., 2020, 379: 102-114,
CrossRef Google scholar
[35.]
Marinescu, D. Ş, Monea, M.: A very short proof of the Hermite-Hadamard inequalities. Am. Math. Month. 127, 850–851 (2020)
[36.]
Matłoka M. Inequalities for h \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-preinvex functions. Appl. Math. Comput., 2014, 234: 52-57
[37.]
Mohammed PO, Sarikaya MZ, Baleanu D. On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals. Symmetry, 2020, 2020: 595,
CrossRef Google scholar
[38.]
Noor MA, Noor KI, Iftikhar S, Ionescu C. Some integral inequalities for product of harmonic log-convex functions. Politehn. Univer. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 2016, 78: 11-20
[39.]
Niculescu CP. The Hermite-Hadamard inequality for log-convex functions. Nonlinear Anal., 2012, 75: 662-669,
CrossRef Google scholar
[40.]
Nwaeze ER, Kermausuor S, Tameru AM. Some new k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Riemann–Liouville fractional integral inequalities associated with the strongly η \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-quasiconvex functions with modulus μ ≥ 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \ge 0$$\end{document}. J. Inequal. Appl., 2018, 2018: 139,
CrossRef Google scholar
[41.]
Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)
[42.]
Sarikaya MZ, Yildirim H. On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes, 2016, 17: 1049-1059,
CrossRef Google scholar
[43.]
Set E, Ardiç MA. Inequalities for log-convex functions and p-functions. Miskolc Math. Notes, 2017, 18: 1033-1041,
CrossRef Google scholar
[44.]
Sun WB, Liu Q. New Hermite–Hadamard type inequalities for ( α , m ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , m)$$\end{document}-convex functions and applications to special means. J. Math. Inequal., 2017, 11: 383-397,
CrossRef Google scholar
[45.]
Wang JR, Deng JH, Fečkan M. Exploring s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}- e \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e$$\end{document}-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals. Math. Slovaca, 2014, 64: 1381-1396,
CrossRef Google scholar
[46.]
Zhang XM, Jiang WD. Some properties of log-convex function and applications for the exponential function. Comput. Math. Appl., 2012, 63: 1111-1116,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/