$^*$Differentiable functions" /> $^*$Differentiable functions" /> $^*$Differentiable functions" />

Estimations of Bounds on the Multiplicative Fractional Integral Inequalities Having Exponential Kernels

Yu Peng , Hao Fu , Tingsong Du

Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (2) : 187 -211.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (2) : 187 -211. DOI: 10.1007/s40304-022-00285-8
Article

Estimations of Bounds on the Multiplicative Fractional Integral Inequalities Having Exponential Kernels

Author information +
History +
PDF

Abstract

To investigate the fractional Hermite–Hadamard-type inequalities, a class of the multiplicative fractional integrals having exponential kernels is introduced. Some estimations of upper bounds for the newly introduced class of integral operators are obtained in terms of the established $^*$differentiable identity. And our results presented in this study are substantial generalizations of previous findings given by Ali et al. (Asian Res J Math 12:1–11, 2019). Three examples are also provided to identify the correctness of the results that occur with the change of the parameter $\alpha $.

Keywords

Hermite–Hadamard-type inequalities / Multiplicative fractional integrals / Multiplicatively convex functions / $^*$Differentiable functions')">$^*$Differentiable functions

Cite this article

Download citation ▾
Yu Peng, Hao Fu, Tingsong Du. Estimations of Bounds on the Multiplicative Fractional Integral Inequalities Having Exponential Kernels. Communications in Mathematics and Statistics, 2022, 12(2): 187-211 DOI:10.1007/s40304-022-00285-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdeljawad T, Grossman M. On geometric fractional calculus. J. Semigroup Theory Appl.. 2016, 2016 2

[2]

Abdeljawad T, Mohammed PO, Kashuri A. New modified conformable fractional integral inequalities of Hermite–Hadamard type with applications. J. Funct. Sp.. 2020, 2020 4352357

[3]

Abramovich S, Persson LE. Fejér and Hermite–Hadamard type inequalities for $N$-quasiconvex functions. Math. Notes. 2017, 102 599-609

[4]

Agarwal P. Some inequalities involving Hadamard-type $k$-fractional integral operators. Math. Methods Appl. Sci.. 2017, 40 3882-3891

[5]

Ahmad B, Alsaedi A, Kirane M, Torebek BT. Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math.. 2019, 353 120-129

[6]

Akkurt A, Kaçar Z, Yildirim H. Generalized fractional integral inequalities for continuous random variables. J. Probab. Stat.. 2015, 2015 1-7

[7]

Ali MA, Abbas M, Zhang Z, Sial IB, Arif R. On integral inequalities for product and quotient of two multiplicatively convex functions. Asian Res. J. Math.. 2019, 12 1-11

[8]

Ali MA , Zhang ZY, Budak H, Sarikaya MZ. On Hermite–Hadamard type inequalities for interval-valued multiplicative integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.. 2020, 69 1428-1448

[9]

Ali MA, Budak H, Sarikaya MZ, Zhang ZY. Ostrowski and Simpson type inequalities for multiplicative integrals. Proyecciones (Antofagasta). 2021, 40 743-763

[10]

Anastassiou GA. Riemann–Liouville fractional fundamental theorem of calculus and Riemann–Liouville fractional Polya type integral inequality and its extension to Choquet integral setting. Bull. Korean Math. Soc.. 2019, 56 1423-1433

[11]

Bai YM, Qi F. Some integral inequalities of the Hermite–Hadamard type for log-convex functions on co-ordinates. J. Nonlinear Sci. Appl.. 2016, 9 5900-5908

[12]

Bakherad M, Kian M, Krnić M, Ahmadi SA. Interpolating Jensen-type operator inequalities for log-convex and superquadratic functions. Filomat. 2018, 13 4523-4535

[13]

Bashirov AE, Kurpınar EM, Özyapıcı A. Multiplicative calculus and its applications. J. Math. Anal. Appl.. 2008, 337 36-48

[14]

Budak H, Özçelik K. On Hermite–Hadamard type inequalities for multiplicative fractional integrals. Miskolc Math. Notes. 2020, 21 91-99

[15]

Budak H, Sarikaya MZ, Usta F, Yildirim H. Some Hermite–Hadamard and Ostrowski type inequalities for fractional integral operators with exponential kernel. Acta Comment. Univer. Tartu. Math.. 2019, 23 25-36

[16]

Butt SI, Akdemir AO, Nasir J, Jarad F. Some Hermite–Jensen–Mercer like inequalities for convex functions through a certain generalized fractional integrals and related results. Miskolc Math. Notes. 2020, 21 689-715

[17]

Chen FX. Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput.. 2015, 268 121-128

[18]

Chen H, Katugampola UN. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl.. 2017, 446 1274-1291

[19]

Delavar MR, Sen MDL. A mapping associated to $h$-convex version of the Hermite–Hadamard inequality with applications. J. Math. Inequal.. 2020, 14 329-335

[20]

Dragomir SS. Hermite–Hadamard type inequalities for generalized Riemann–Liouville fractional integrals of $h$-convex functions. Math. Methods Appl. Sci.. 2021, 44 2364-2380

[21]

Dragomir SS. Further inequalities for log-convex functions related to Hermite–Hadamard result. Proyecc. J. Math.. 2019, 38 267-293

[22]

Du TS, Awan MU, Kashuri A, Zhao SS. Some $k$-fractional extensions of the trapezium inequalities through generalized relative semi-$(m, h)$-preinvexity. Appl. Anal.. 2021, 100 642-662

[23]

Du TS, Wang H, Khan MA, Zhang Y. Certain integral inequalities considering generalized $m$-convexity on fractal sets and their applications. Fractals. 2019, 27 1-17

[24]

Du TS, Luo CY, Yu B. Certain quantum estimates on the parameterized integral inequalities and their applications. J. Math. Inequal.. 2021, 15 201-228

[25]

Ekinci A, Özdemir ME. Some new integral inequalities via Riemann–Liouville integral operators. Appl. Comput. Math.. 2019, 18 288-295

[26]

Fu H, Peng Y, Du TS. Some inequalities for multiplicative tempered fractional integrals involving the $\lambda $-incomplete gamma functions. AIMS Math.. 2021, 6 7456-7478

[27]

Hwang DY, Dragomir SS. Extensions of the Hermite–Hadamard inequality for $r$-preinvex functions on an invex set. Bull. Aust. Math. Soc.. 2017, 95 412-423

[28]

İşcan, İ.: Weighted Hermite–Hadamard–Mercer type inequalities for convex functions. Numer. Methods Part. Differ. Equ. 37, 118–130 (2021)

[29]

Khan MA , Ali T, Dragomir SS, Sarikaya MZ. Hermite–Hadamard type inequalities for conformable fractional integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM. 2018, 112 1033-1048

[30]

Khan, S., Budak, H.: On midpoint and trapezoid type inequalities for multiplicative integrals. Mathematica (Cluj) (in press). http://math.ubbcluj.ro/~mathjour/accepted.html

[31]

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier (2006)

[32]

Kunt, M., Karapinar, D., Turhan, S., İsçan, İ.: The left Riemann–Liouville fractional Hermite–Hadamard type inequalities for convex functions. Math. Slovaca 69, 773–784 (2019)

[33]

Latif MA. On some new inequalities of Hermite-Hadamard type for functions whose derivatives are $s$-convex in the second sense in the absolute value. Ukr. Math. J.. 2016, 67 1552-1571

[34]

Liao JG, Wu SH, Du TS. The Sugeno integral with respect to $\alpha $-preinvex functions. Fuzzy Sets Syst.. 2020, 379 102-114

[35]

Marinescu, D. Ş, Monea, M.: A very short proof of the Hermite-Hadamard inequalities. Am. Math. Month. 127, 850–851 (2020)

[36]

Matłoka M. Inequalities for $h$-preinvex functions. Appl. Math. Comput.. 2014, 234 52-57

[37]

Mohammed PO, Sarikaya MZ, Baleanu D. On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals. Symmetry. 2020, 2020 595

[38]

Noor MA, Noor KI, Iftikhar S, Ionescu C. Some integral inequalities for product of harmonic log-convex functions. Politehn. Univer. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.. 2016, 78 11-20

[39]

Niculescu CP. The Hermite-Hadamard inequality for log-convex functions. Nonlinear Anal.. 2012, 75 662-669

[40]

Nwaeze ER, Kermausuor S, Tameru AM. Some new $k$-Riemann–Liouville fractional integral inequalities associated with the strongly $\eta $-quasiconvex functions with modulus $\mu \ge 0$. J. Inequal. Appl.. 2018, 2018 139

[41]

Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)

[42]

Sarikaya MZ, Yildirim H. On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes. 2016, 17 1049-1059

[43]

Set E, Ardiç MA. Inequalities for log-convex functions and p-functions. Miskolc Math. Notes. 2017, 18 1033-1041

[44]

Sun WB, Liu Q. New Hermite–Hadamard type inequalities for $(\alpha , m)$-convex functions and applications to special means. J. Math. Inequal.. 2017, 11 383-397

[45]

Wang JR, Deng JH, Fečkan M. Exploring $s$-$e$-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals. Math. Slovaca. 2014, 64 1381-1396

[46]

Zhang XM, Jiang WD. Some properties of log-convex function and applications for the exponential function. Comput. Math. Appl.. 2012, 63 1111-1116

AI Summary AI Mindmap
PDF

202

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/