A Global Torelli Theorem for Certain Calabi-Yau Threefolds

Mao Sheng, Jinxing Xu

Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (1) : 91-112. DOI: 10.1007/s40304-021-00283-2
Article

A Global Torelli Theorem for Certain Calabi-Yau Threefolds

Author information +
History +

Abstract

We establish a global Torelli theorem for the complete family of Calabi-Yau threefolds arising from cyclic triple covers of

P 3
branched along six stable hyperplanes.

Keywords

Global Torelli theorem / Calabi-Yau threefolds / Hyperplane arrangements

Cite this article

Download citation ▾
Mao Sheng, Jinxing Xu. A Global Torelli Theorem for Certain Calabi-Yau Threefolds. Communications in Mathematics and Statistics, 2022, 12(1): 91‒112 https://doi.org/10.1007/s40304-021-00283-2

References

[1.]
Allcock D, Carlson JA, Toledo D. The complex hyperbolic geometry of the moduli space of cubic surfaces. J. Algebraic Geom., 2002, 11(4): 659-724,
CrossRef Google scholar
[2.]
Andreotti A. On a theorem of Torelli. Am. J. Math., 1958, 80: 801-828,
CrossRef Google scholar
[3.]
Burns D, Rapoport M. On the Torelli problem for Kählerian K3 surfaces. Ann. Sc. ENS., 1975, 8: 235-274
[4.]
Deligne P, Mostow GD. Monodromy of hypergeometric functions and non-lattice integral monodromy. Publ. Math. Inst. Hautes Études Sci., 1986, 63: 5-89,
CrossRef Google scholar
[5.]
Dolgachev, I., Ortland, D.: Point sets in projective spaces and theta functions, Astérisque 165 (1988)
[6.]
Fox, R.H.: Covering spaces with singularities, in Lefschetz Symposium, Priceton University Press (1957), pp. 243-262
[7.]
Kennichiro S. Generic Torelli theorem for one-parameter mirror families to weighted hypersurfaces. Proc. Japan Acad. Ser. A Math. Sci., 2009, 85(10): 167-170
[8.]
Laza R. The moduli space of cubic fourfolds via the period map. Ann. of Math., 2010, 172(2): 673-711,
CrossRef Google scholar
[9.]
Looijenga E. The period map for cubic fourfolds. Invent. Math., 2009, 177: 213-233,
CrossRef Google scholar
[10.]
Looijenga E, Peters C. Torelli theorems for Kähler K3-surfaces. Compos. Math., 1981, 42: 145-186
[11.]
McMullen CT. Braid groups and Hodge theory. Math. Ann., 2013, 355: 893-946,
CrossRef Google scholar
[12.]
Pham F. Formules de Picard-Lefschetz généralisées et ramification des intégrales Bull. Soc. Math. France., 1965, 93: 333-367,
CrossRef Google scholar
[13.]
Piatečkii-Shapiro II, Šafarevič IR. A Torelli theorem for algebraic surfaces of type K3. Math. USSR, Izv., 1971, 5: 547-588,
CrossRef Google scholar
[14.]
Rohde, J.: Cyclic coverings, Calabi-Yau manifolds and complex multiplication. Lecture Notes in Math, vol. 1975. Springer, Berlin (2009)
[15.]
Sheng M, Xu J, Zuo K. Maximal families of Calabi-Yau manifolds with minimal length Yukawa coupling. Comm. Math. Statist., 2013, 1(1): 73-92,
CrossRef Google scholar
[16.]
Sheng, M., Xu, J., Zuo, K.: The monodromy groups of Dolgachev’s CY moduli spaces are Zariski dense. Adv. Math. 272, 699–742 (2015)
[17.]
Usui S. Generic Torelli theorem for quintic-mirror family. Proc. Japan Acad. Ser. A Math. Sci., 2008, 84(8): 143-146,
CrossRef Google scholar
[18.]
Verbitsky M. A global Torelli theorem for hyperkahler manifolds. Duke Math. J., 2013, 162: 2929-2986,
CrossRef Google scholar
[19.]
Voisin, C.: Théorème de Torelli pour les cubiques de ${\mathbb{P}}^5$, Invent. Math. 86, 577-601 (1986). Erratum in Invent. Math. 172, pp. 455-458 (2008)
[20.]
Voisin, C.: A generic Torelli theorem for the quintic threefold, in New trends in algebraic geometry (Warwick, 1996), pp. 425-463, Cambridge Univ. Press, Cambridge
[21.]
Wang C-L. On the incompleteness of the Weil-Petersson metric along degenerations of Calabi-Yau mainfolds. Math. Res. Lett., 1997, 4: 157-171,
CrossRef Google scholar
Funding
National Key Research and Development Project(2020YFA0713100); Fundamental Research Funds for the Central Universities(WK3470000018); National Natural Science Foundation of China(11721101); Youth Innovation Promotion Association of the Chinese Academy of Sciences; Anhui Provincial Natural Science Foundation(2008085MA04); Anhui Initiative in Quantum Information Technologies(AHY150200)

Accesses

Citations

Detail

Sections
Recommended

/