| [1] |
Allcock D, Carlson JA, Toledo D. The complex hyperbolic geometry of the moduli space of cubic surfaces. J. Algebraic Geom.. 2002, 11 4 659-724
|
| [2] |
Andreotti A. On a theorem of Torelli. Am. J. Math.. 1958, 80 801-828
|
| [3] |
Burns D, Rapoport M. On the Torelli problem for Kählerian K3 surfaces. Ann. Sc. ENS.. 1975, 8 235-274
|
| [4] |
Deligne P, Mostow GD. Monodromy of hypergeometric functions and non-lattice integral monodromy. Publ. Math. Inst. Hautes Études Sci.. 1986, 63 5-89
|
| [5] |
Dolgachev, I., Ortland, D.: Point sets in projective spaces and theta functions, Astérisque 165 (1988)
|
| [6] |
Fox, R.H.: Covering spaces with singularities, in Lefschetz Symposium, Priceton University Press (1957), pp. 243-262
|
| [7] |
Kennichiro S. Generic Torelli theorem for one-parameter mirror families to weighted hypersurfaces. Proc. Japan Acad. Ser. A Math. Sci.. 2009, 85 10 167-170
|
| [8] |
Laza R. The moduli space of cubic fourfolds via the period map. Ann. of Math.. 2010, 172 2 673-711
|
| [9] |
Looijenga E. The period map for cubic fourfolds. Invent. Math.. 2009, 177 213-233
|
| [10] |
Looijenga E, Peters C. Torelli theorems for Kähler K3-surfaces. Compos. Math.. 1981, 42 145-186
|
| [11] |
McMullen CT. Braid groups and Hodge theory. Math. Ann.. 2013, 355 893-946
|
| [12] |
Pham F. Formules de Picard-Lefschetz généralisées et ramification des intégrales Bull. Soc. Math. France.. 1965, 93 333-367
|
| [13] |
Piatečkii-Shapiro II, Šafarevič IR. A Torelli theorem for algebraic surfaces of type K3. Math. USSR, Izv.. 1971, 5 547-588
|
| [14] |
Rohde, J.: Cyclic coverings, Calabi-Yau manifolds and complex multiplication. Lecture Notes in Math, vol. 1975. Springer, Berlin (2009)
|
| [15] |
Sheng M, Xu J, Zuo K. Maximal families of Calabi-Yau manifolds with minimal length Yukawa coupling. Comm. Math. Statist.. 2013, 1 1 73-92
|
| [16] |
Sheng, M., Xu, J., Zuo, K.: The monodromy groups of Dolgachev’s CY moduli spaces are Zariski dense. Adv. Math. 272, 699–742 (2015)
|
| [17] |
Usui S. Generic Torelli theorem for quintic-mirror family. Proc. Japan Acad. Ser. A Math. Sci.. 2008, 84 8 143-146
|
| [18] |
Verbitsky M. A global Torelli theorem for hyperkahler manifolds. Duke Math. J.. 2013, 162 2929-2986
|
| [19] |
Voisin, C.: Théorème de Torelli pour les cubiques de ${\mathbb{P}}^5$, Invent. Math. 86, 577-601 (1986). Erratum in Invent. Math. 172, pp. 455-458 (2008)
|
| [20] |
Voisin, C.: A generic Torelli theorem for the quintic threefold, in New trends in algebraic geometry (Warwick, 1996), pp. 425-463, Cambridge Univ. Press, Cambridge
|
| [21] |
Wang C-L. On the incompleteness of the Weil-Petersson metric along degenerations of Calabi-Yau mainfolds. Math. Res. Lett.. 1997, 4 157-171
|
Funding
National Key Research and Development Project(2020YFA0713100)
Fundamental Research Funds for the Central Universities(WK3470000018)
National Natural Science Foundation of China(11721101)
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Anhui Provincial Natural Science Foundation(2008085MA04)
Anhui Initiative in Quantum Information Technologies(AHY150200)