A Global Torelli Theorem for Certain Calabi-Yau Threefolds
Mao Sheng, Jinxing Xu
A Global Torelli Theorem for Certain Calabi-Yau Threefolds
We establish a global Torelli theorem for the complete family of Calabi-Yau threefolds arising from cyclic triple covers of
Global Torelli theorem / Calabi-Yau threefolds / Hyperplane arrangements
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
Dolgachev, I., Ortland, D.: Point sets in projective spaces and theta functions, Astérisque 165 (1988)
|
[6.] |
Fox, R.H.: Covering spaces with singularities, in Lefschetz Symposium, Priceton University Press (1957), pp. 243-262
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
Rohde, J.: Cyclic coverings, Calabi-Yau manifolds and complex multiplication. Lecture Notes in Math, vol. 1975. Springer, Berlin (2009)
|
[15.] |
|
[16.] |
Sheng, M., Xu, J., Zuo, K.: The monodromy groups of Dolgachev’s CY moduli spaces are Zariski dense. Adv. Math. 272, 699–742 (2015)
|
[17.] |
|
[18.] |
|
[19.] |
Voisin, C.: Théorème de Torelli pour les cubiques de ${\mathbb{P}}^5$, Invent. Math. 86, 577-601 (1986). Erratum in Invent. Math. 172, pp. 455-458 (2008)
|
[20.] |
Voisin, C.: A generic Torelli theorem for the quintic threefold, in New trends in algebraic geometry (Warwick, 1996), pp. 425-463, Cambridge Univ. Press, Cambridge
|
[21.] |
|
/
〈 | 〉 |