Tool Path Planning with Confined Scallop Height Error Using Optimal Connected Fermat Spirals

Hong-Yu Ma, Chun-Ming Yuan, Li-Yong Shen

Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (1) : 55-78. DOI: 10.1007/s40304-021-00280-5
Article

Tool Path Planning with Confined Scallop Height Error Using Optimal Connected Fermat Spirals

Author information +
History +

Abstract

In CNC machining, the tool path planning of the cutter plays an important role. In this paper, we generate a space-filling and continuous tool path for free-form surface represented by the triangular mesh with a confined scallop height. The tool path is constructed from connected Fermat spirals (CFS) but with fewer inflection points. Comparing with the newly developed CFS method, only about half of the number of inflection points are involved. Moreover, the kinematic constraints are simultaneously taken into account to increase the feedrates in machining. Finally, we use a micro-line trajectory technique to smooth the tool path. Experimental results and physical cutting tests are provided to illustrate and clarify our method.

Keywords

Tool path planning / Connected Fermat spirals / Scallop height / Kinematic constraints

Cite this article

Download citation ▾
Hong-Yu Ma, Chun-Ming Yuan, Li-Yong Shen. Tool Path Planning with Confined Scallop Height Error Using Optimal Connected Fermat Spirals. Communications in Mathematics and Statistics, 2022, 12(1): 55‒78 https://doi.org/10.1007/s40304-021-00280-5

References

[1.]
Anotaipaiboon W, Makhanov SS. Curvilinear space-filling curves for five-axis machining. Comput. Aided Des., 2008, 40(3): 350-367,
CrossRef Google scholar
[2.]
Anotaipaiboon W, Makhanov SS. Tool path generation for five-axis NC machining using adaptive space-filling curves. Int. J. Prod. Res., 2005, 43(8): 1643-1665,
CrossRef Google scholar
[3.]
Au C. A path interval generation algorithm in sculptured object machining. Int. J. Adv. Manuf. Technol., 2001, 17: 558-561,
CrossRef Google scholar
[4.]
Chen L, Zhang R, Tang K, Hu P, Zhao P, Li Z, Han Z. A spiral-based inspection path generation algorithm for efficient five-axis sweep scanning of freeform surfaces. Comput. Aided Des., 2020, 124,
CrossRef Google scholar
[5.]
Chen Y, Shen LY, Yuan CM. Collision and intersection detection of two ruled surfaces using bracket method. Comput. Aided Geom. Des., 2011, 28(2): 114-126,
CrossRef Google scholar
[6.]
Chiou CJ, Lee YS. A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Comput. Aided Des., 2002, 34(5): 357-371,
CrossRef Google scholar
[7.]
Choi BK, Park SC. A pair-wise offset algorithm for 2D point-sequence curve. Comput. Aided Des., 1999, 31(12): 735-745,
CrossRef Google scholar
[8.]
Cox JJ, Takezaki Y, Ferguson HRP, Kohkonen KE, Mulkay EL. Space-filling curves in tool-path applications. Comput. Aided Des., 1994, 26(3): 215-224,
CrossRef Google scholar
[9.]
Crane K, Weischedel C, Wardetzky M. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph, 2013,
CrossRef Google scholar
[10.]
Elber G, Cohen E. Toolpath generation for freeform surface models. Comput. Aided Des., 1994, 26: 490-496,
CrossRef Google scholar
[11.]
Farouki RT, Tsai YF, Yuan GF. Contour machining of free-form surfaces with real-time PH curve CNC interpolators. Comput. Aided Geom. Des., 1999, 16(1): 61-76,
CrossRef Google scholar
[12.]
Giri, V., Bezbaruah, D., Bubna, P., Choudhury, A.R.: Selection of master cutter paths in sculptured surface machining by employing curvature principle. Int, J. Mach. Tools Manuf., 45(10):1202–1209, (2005). ISSN 0890-6955. https://doi.org/10.1016/j.ijmachtools.2004.12.008
[13.]
Gu, X., Yau, S.T.: Computational Conformal Geometry. Higher Education Press, (2020)
[14.]
Held M, Lukács G, Andor L. Pocket machining based on contour-parallel tool paths generated by means of proximity maps. Comput. Aided Des., 1994, 26(3): 189-203,
CrossRef Google scholar
[15.]
Held M. Voronoi diagrams and offset curves of curvilinear polygons. Comput. Aided Des., 1998, 30(4): 287-300,
CrossRef Google scholar
[16.]
Hu P, Chen L, Tang K. Efficiency-optimal iso-planar tool path generation for five-axis finishing machining of freeform surfaces. Comput. Aided Des., 2017, 83: 33-50,
CrossRef Google scholar
[17.]
Huo G, Jiang X, Su C, Lu Z, Sun Y, Zheng Z, Xue D. CNC tool path generation for freeform surface machining based on preferred feed direction field. Int. J. Prec. Eng. Manuf., 2019, 20: 777-790,
CrossRef Google scholar
[18.]
Kim BH, Choi BK. Machining efficiency comparison direction-parallel tool path with contour-parallel tool path. Comput. Aided Des., 2002, 34(2): 89-95,
CrossRef Google scholar
[19.]
Lee E. Contour offset approach to spiral toolpath generation with constant scallop height. Comput. Aided Des., 2003, 35(6): 511-518,
CrossRef Google scholar
[20.]
Lee Y, Ji H. Surface interrogation and machining strip evaluation for 5-axis CNC die and mold machining. Int. J. Prod. Res., 1997, 35(1): 225-252,
CrossRef Google scholar
[21.]
Lee YS. Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining. Comput. Aided Des., 1998, 30(7): 559-570,
CrossRef Google scholar
[22.]
Liang F, Kang C, Lu Z, Fang F. Iso-scallop tool path planning for triangular mesh surfaces in multi-axis machining. Robot. Comput. Integ. Manuf., 2021, 72,
CrossRef Google scholar
[23.]
Lin R, Koren YY. Efficient tool-path planning for machining free-form surfaces. J. Eng. Ind., 1996, 118(1): 20-28,
CrossRef Google scholar
[24.]
Loney GC, Ozsoy TM. NC machining of free form surfaces. Comput. Aided Des., 1987, 19(2): 85-90,
CrossRef Google scholar
[25.]
Marshall S, Griffiths JG. A new cutter-path topology for milling machines. Comput. Aided Des., 1994, 26(3): 204-214,
CrossRef Google scholar
[26.]
Min C. A new iso-scallop height tool path planning method in three-dimensional space. Comput. Aided Draft. Des. Manuf., 2012, 22: 35-42
[27.]
Pi J, Red E, Jensen G. Grind-free tool path generation for five-axis surface machining. Comput. Integr. Manuf. Syst., 1998, 11(4): 337-350,
CrossRef Google scholar
[28.]
Salman M, Mansor A, Hinduja S, Owodunni OO. Voronoi diagram-based tool path compensations for removing uncut material in 2 1 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document}D pocket machining. Comput. Aided Des., 2006, 38(3): 194-209,
CrossRef Google scholar
[29.]
Sarma SE. The crossing function and its application to zig-zag tool paths. Comput. Aided Des., 1999, 31(4): 881-890,
CrossRef Google scholar
[30.]
Shen H, Li J, Zhou L. Estimation of triangular mesh vertex normal vector and discrete curvature. Comput. Eng. Appl., 2005, 41(26): 12-15
[31.]
Su C, Jiang X, Huo G, Sun Y, Zheng Z. Initial tool path selection of the iso-scallop method based on offset similarity analysis for global preferred feed directions matching. Int. J. Adv. Manuf. Technol., 2020, 106: 2675-2687,
CrossRef Google scholar
[32.]
Sun Y, Xu J, Jin C, Guo D. Smooth tool path generation for 5-axis machining of triangular mesh surface with nonzero genus. Comput. Aided Des., 2016, 79: 60-74,
CrossRef Google scholar
[33.]
Taubin G. Estimating the tensor of curvature of a surface from a polyhedral approximation. Proc. IEEE Int. Conf. Comput. Vis., 1995,
CrossRef Google scholar
[34.]
Xu J, Xu L, Sun Y, Lee Y, Zhao J. A method of generating spiral tool path for direct three-axis computer numerical control machining of measured cloud of point. ASME J. Comput. Inf. Sci. Eng, 2019, 19(4),
CrossRef Google scholar
[35.]
Xu K, Li Y. Region based five-axis tool path generation for freeform surface machining via image representation. Robot. Comput. Integ. Manuf., 2019, 57: 230-240,
CrossRef Google scholar
[36.]
Zhang L, Sun R, Gao XS, Li H. High speed interpolation for micro-line trajectory and adaptive real-time look-ahead scheme in CNC machining. SCI. CHINA Technol. Sci., 2011, 54(6): 1481-1495,
CrossRef Google scholar
[37.]
Zhao H, Gu F, Huang QX, Garcia J, Chen Y, Tu C, Benes B, Zhang H, Cohen-Or D, Chen B. Connected fermat spirals for layered fabrication. ACM Trans. Graph, 2016,
CrossRef Google scholar
[38.]
Zhao H, Zhang H, Xin S, Deng Y, Tu C, Wang W, Cohen-Or D, Chen B. DSCarver: decompose-and-spiral-carve for subtractive manufacturing. ACM Trans. Graph, 2018,
CrossRef Google scholar
[39.]
Zhu H, Liu Z, Fu J. Spiral tool-path generation with constant scallop height for sheet metal CNC incremental forming. Int. J. Adv. Manuf. Technol., 2011, 54(9–12): 911-919,
CrossRef Google scholar
[40.]
Zou Q, Zhang J, Deng B, Zhao J. Iso-level tool path planning for free-form surfaces. Comput. Aided Des., 2014, 53: 117-125,
CrossRef Google scholar
Funding
Natural Science Foundation of Beijing Municipality(Z190004); Key Technologies Research and Development Program(2020YFA0713703); National Natural Science Foundation of China(11688101); Fundamental Research Funds for Central Universities of the Central South University

Accesses

Citations

Detail

Sections
Recommended

/