Tool Path Planning with Confined Scallop Height Error Using Optimal Connected Fermat Spirals

Hong-Yu Ma , Chun-Ming Yuan , Li-Yong Shen

Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (1) : 55 -78.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (1) : 55 -78. DOI: 10.1007/s40304-021-00280-5
Article

Tool Path Planning with Confined Scallop Height Error Using Optimal Connected Fermat Spirals

Author information +
History +
PDF

Abstract

In CNC machining, the tool path planning of the cutter plays an important role. In this paper, we generate a space-filling and continuous tool path for free-form surface represented by the triangular mesh with a confined scallop height. The tool path is constructed from connected Fermat spirals (CFS) but with fewer inflection points. Comparing with the newly developed CFS method, only about half of the number of inflection points are involved. Moreover, the kinematic constraints are simultaneously taken into account to increase the feedrates in machining. Finally, we use a micro-line trajectory technique to smooth the tool path. Experimental results and physical cutting tests are provided to illustrate and clarify our method.

Keywords

Tool path planning / Connected Fermat spirals / Scallop height / Kinematic constraints

Cite this article

Download citation ▾
Hong-Yu Ma, Chun-Ming Yuan, Li-Yong Shen. Tool Path Planning with Confined Scallop Height Error Using Optimal Connected Fermat Spirals. Communications in Mathematics and Statistics, 2022, 12(1): 55-78 DOI:10.1007/s40304-021-00280-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anotaipaiboon W, Makhanov SS. Curvilinear space-filling curves for five-axis machining. Comput. Aided Des.. 2008, 40 3 350-367

[2]

Anotaipaiboon W, Makhanov SS. Tool path generation for five-axis NC machining using adaptive space-filling curves. Int. J. Prod. Res.. 2005, 43 8 1643-1665

[3]

Au C. A path interval generation algorithm in sculptured object machining. Int. J. Adv. Manuf. Technol.. 2001, 17 558-561

[4]

Chen L, Zhang R, Tang K, Hu P, Zhao P, Li Z, Han Z. A spiral-based inspection path generation algorithm for efficient five-axis sweep scanning of freeform surfaces. Comput. Aided Des.. 2020, 124

[5]

Chen Y, Shen LY, Yuan CM. Collision and intersection detection of two ruled surfaces using bracket method. Comput. Aided Geom. Des.. 2011, 28 2 114-126

[6]

Chiou CJ, Lee YS. A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Comput. Aided Des.. 2002, 34 5 357-371

[7]

Choi BK, Park SC. A pair-wise offset algorithm for 2D point-sequence curve. Comput. Aided Des.. 1999, 31 12 735-745

[8]

Cox JJ, Takezaki Y, Ferguson HRP, Kohkonen KE, Mulkay EL. Space-filling curves in tool-path applications. Comput. Aided Des.. 1994, 26 3 215-224

[9]

Crane K, Weischedel C, Wardetzky M. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 2013

[10]

Elber G, Cohen E. Toolpath generation for freeform surface models. Comput. Aided Des.. 1994, 26 490-496

[11]

Farouki RT, Tsai YF, Yuan GF. Contour machining of free-form surfaces with real-time PH curve CNC interpolators. Comput. Aided Geom. Des.. 1999, 16 1 61-76

[12]

Giri, V., Bezbaruah, D., Bubna, P., Choudhury, A.R.: Selection of master cutter paths in sculptured surface machining by employing curvature principle. Int, J. Mach. Tools Manuf., 45(10):1202–1209, (2005). ISSN 0890-6955. https://doi.org/10.1016/j.ijmachtools.2004.12.008

[13]

Gu, X., Yau, S.T.: Computational Conformal Geometry. Higher Education Press, (2020)

[14]

Held M, Lukács G, Andor L. Pocket machining based on contour-parallel tool paths generated by means of proximity maps. Comput. Aided Des.. 1994, 26 3 189-203

[15]

Held M. Voronoi diagrams and offset curves of curvilinear polygons. Comput. Aided Des.. 1998, 30 4 287-300

[16]

Hu P, Chen L, Tang K. Efficiency-optimal iso-planar tool path generation for five-axis finishing machining of freeform surfaces. Comput. Aided Des.. 2017, 83 33-50

[17]

Huo G, Jiang X, Su C, Lu Z, Sun Y, Zheng Z, Xue D. CNC tool path generation for freeform surface machining based on preferred feed direction field. Int. J. Prec. Eng. Manuf.. 2019, 20 777-790

[18]

Kim BH, Choi BK. Machining efficiency comparison direction-parallel tool path with contour-parallel tool path. Comput. Aided Des.. 2002, 34 2 89-95

[19]

Lee E. Contour offset approach to spiral toolpath generation with constant scallop height. Comput. Aided Des.. 2003, 35 6 511-518

[20]

Lee Y, Ji H. Surface interrogation and machining strip evaluation for 5-axis CNC die and mold machining. Int. J. Prod. Res.. 1997, 35 1 225-252

[21]

Lee YS. Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining. Comput. Aided Des.. 1998, 30 7 559-570

[22]

Liang F, Kang C, Lu Z, Fang F. Iso-scallop tool path planning for triangular mesh surfaces in multi-axis machining. Robot. Comput. Integ. Manuf.. 2021, 72

[23]

Lin R, Koren YY. Efficient tool-path planning for machining free-form surfaces. J. Eng. Ind.. 1996, 118 1 20-28

[24]

Loney GC, Ozsoy TM. NC machining of free form surfaces. Comput. Aided Des.. 1987, 19 2 85-90

[25]

Marshall S, Griffiths JG. A new cutter-path topology for milling machines. Comput. Aided Des.. 1994, 26 3 204-214

[26]

Min C. A new iso-scallop height tool path planning method in three-dimensional space. Comput. Aided Draft. Des. Manuf.. 2012, 22 35-42

[27]

Pi J, Red E, Jensen G. Grind-free tool path generation for five-axis surface machining. Comput. Integr. Manuf. Syst.. 1998, 11 4 337-350

[28]

Salman M, Mansor A, Hinduja S, Owodunni OO. Voronoi diagram-based tool path compensations for removing uncut material in 2$\frac{1}{2}$D pocket machining. Comput. Aided Des.. 2006, 38 3 194-209

[29]

Sarma SE. The crossing function and its application to zig-zag tool paths. Comput. Aided Des.. 1999, 31 4 881-890

[30]

Shen H, Li J, Zhou L. Estimation of triangular mesh vertex normal vector and discrete curvature. Comput. Eng. Appl.. 2005, 41 26 12-15

[31]

Su C, Jiang X, Huo G, Sun Y, Zheng Z. Initial tool path selection of the iso-scallop method based on offset similarity analysis for global preferred feed directions matching. Int. J. Adv. Manuf. Technol.. 2020, 106 2675-2687

[32]

Sun Y, Xu J, Jin C, Guo D. Smooth tool path generation for 5-axis machining of triangular mesh surface with nonzero genus. Comput. Aided Des.. 2016, 79 60-74

[33]

Taubin G. Estimating the tensor of curvature of a surface from a polyhedral approximation. Proc. IEEE Int. Conf. Comput. Vis.. 1995

[34]

Xu J, Xu L, Sun Y, Lee Y, Zhao J. A method of generating spiral tool path for direct three-axis computer numerical control machining of measured cloud of point. ASME J. Comput. Inf. Sci. Eng. 2019, 19 4

[35]

Xu K, Li Y. Region based five-axis tool path generation for freeform surface machining via image representation. Robot. Comput. Integ. Manuf.. 2019, 57 230-240

[36]

Zhang L, Sun R, Gao XS, Li H. High speed interpolation for micro-line trajectory and adaptive real-time look-ahead scheme in CNC machining. SCI. CHINA Technol. Sci.. 2011, 54 6 1481-1495

[37]

Zhao H, Gu F, Huang QX, Garcia J, Chen Y, Tu C, Benes B, Zhang H, Cohen-Or D, Chen B. Connected fermat spirals for layered fabrication. ACM Trans. Graph. 2016

[38]

Zhao H, Zhang H, Xin S, Deng Y, Tu C, Wang W, Cohen-Or D, Chen B. DSCarver: decompose-and-spiral-carve for subtractive manufacturing. ACM Trans. Graph. 2018

[39]

Zhu H, Liu Z, Fu J. Spiral tool-path generation with constant scallop height for sheet metal CNC incremental forming. Int. J. Adv. Manuf. Technol.. 2011, 54 9–12 911-919

[40]

Zou Q, Zhang J, Deng B, Zhao J. Iso-level tool path planning for free-form surfaces. Comput. Aided Des.. 2014, 53 117-125

Funding

Natural Science Foundation of Beijing Municipality(Z190004)

Key Technologies Research and Development Program(2020YFA0713703)

National Natural Science Foundation of China(61872332)

Fundamental Research Funds for Central Universities of the Central South University

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/