Let G be a finite group and assume that a group of automorphisms A is acting on G such that A and G have coprime orders. We prove that the fact of imposing specific properties on the second maximal A-invariant subgroups of G determines that G is either soluble or isomorphic to a few non-soluble groups such as PSL(2, 5) or SL(2, 5).
| [1] |
Belonogov, V.A.: Finite solvable groups with nilpotent 2-maximal subgroups, Mat. Zametki 3, 21-32 (1968); translation in Math. Notes 3, 15–21 (1968)
|
| [2] |
Beltrán A, Shao CG. Restrictions on maximal invariant subgroups implying solubility of finite groups. Ann. Mat. Pura Appl.. 2019, 4 198 357-366
|
| [3] |
Beltrán A, Shao CG. Invariant class sizes and solvability of finite groups under coprime action. Math. Nach.. 2016, 289 2–3 187-193
|
| [4] |
Beltrán A. Action with nilpotent fixed point subgroup. Arch. Math.. 1997, 69 3 177-184
|
| [5] |
Conway JH, Curtis RT, Norton SP, Parker RA, Wilson RA. Atlas of Finite Groups. 1985 London: Oxford University Press
|
| [6] |
Gorenstein D, Lyons R, Solomon R. The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs. 1998 Providence: American Mathematical Society
|
| [7] |
Gèrono GC. Note sur la résolution en nombres entiers et positifs de l’équation $x^m=y^n -1$. Nouv. Ann. Math.. 1870, 2 9 469-471
|
| [8] |
Hartley R. Determination of the ternary collineation groups whose coefficients lie in the $GF(2^n)$. Ann. Math.. 1925, 27 140-158
|
| [9] |
Huppert B, Blackburn H. Finite groups II. 1982 Berlin: Springer
|
| [10] |
Huppert B. Endliche Gruppen I. 1967 Berlin: Springer
|
| [11] |
Isaacs MI. Finite Group Theory. 2008 Providence, RI: American Mathematical Society
|
| [12] |
Janko Z. Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen. Math. Z. 1962, 79 422-424
|
| [13] |
Kurzweil H, Stellmacher B. The Theory of Finite Groups. An introduction. 2004 Berlin: Springer
|
| [14] |
Li SR. Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups. Math. Proc. R. Ir. Acad. 2000, 100A 1 65-71
|
| [15] |
Malle G, Navarro G, Späth B. Invariant blocks under coprime actions. Doc. Math.. 2015, 20 491-506
|
| [16] |
Meng W, Chen W, Lu J. Finite groups with abelian second maximal subgroups. Commun. Algebra. 2020, 48 4 1577-1583
|
| [17] |
Shao CG, Beltrán A. Invariant TI-subgroups and structure of finite groups. J. Pure Appl. Algebra. 2021, 225 4 106566
|
| [18] |
Thompson JG. Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Amer. Math. Soc.. 1968, 74 3 383-437
|
| [19] |
Walls G. Trivial intersection groups. Arch. Math.. 1979, 32 1-4
|
Funding
National Nature Science Fund of China(12071181)
Nature Science Fund of Shandong Province(ZR2019MA044)
Ministerio de Ciencia Tecnología y Telecomunicaciones (CR)(PGC2018-096872-B-100)
Universitat Jaume I(UJI-B2019-03)
Generalitat Valenciana(Proyecto AICO/2020/298)