Second Maximal Invariant Subgroups and Solubility of Finite Groups

Changguo Shao, Antonio Beltrán

Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (1) : 45-54. DOI: 10.1007/s40304-021-00279-y
Article

Second Maximal Invariant Subgroups and Solubility of Finite Groups

Author information +
History +

Abstract

Let G be a finite group and assume that a group of automorphisms A is acting on G such that A and G have coprime orders. We prove that the fact of imposing specific properties on the second maximal A-invariant subgroups of G determines that G is either soluble or isomorphic to a few non-soluble groups such as PSL(2, 5) or SL(2, 5).

Keywords

Invariant subgroups / Coprime action / Second maximal subgroup / Trivial intersection subgroup

Cite this article

Download citation ▾
Changguo Shao, Antonio Beltrán. Second Maximal Invariant Subgroups and Solubility of Finite Groups. Communications in Mathematics and Statistics, 2022, 12(1): 45‒54 https://doi.org/10.1007/s40304-021-00279-y

References

[1.]
Belonogov, V.A.: Finite solvable groups with nilpotent 2-maximal subgroups, Mat. Zametki 3, 21-32 (1968); translation in Math. Notes 3, 15–21 (1968)
[2.]
Beltrán A, Shao CG. Restrictions on maximal invariant subgroups implying solubility of finite groups. Ann. Mat. Pura Appl., 2019, 4(198): 357-366,
CrossRef Google scholar
[3.]
Beltrán A, Shao CG. Invariant class sizes and solvability of finite groups under coprime action. Math. Nach., 2016, 289(2–3): 187-193,
CrossRef Google scholar
[4.]
Beltrán A. Action with nilpotent fixed point subgroup. Arch. Math., 1997, 69(3): 177-184,
CrossRef Google scholar
[5.]
Conway JH, Curtis RT, Norton SP, Parker RA, Wilson RA. . Atlas of Finite Groups, 1985 London Oxford University Press
[6.]
Gorenstein D, Lyons R, Solomon R. . The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, 1998 Providence American Mathematical Society
[7.]
Gèrono GC. Note sur la résolution en nombres entiers et positifs de l’équation x m = y n - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^m=y^n -1$$\end{document}. Nouv. Ann. Math., 1870, 2(9): 469-471
[8.]
Hartley R. Determination of the ternary collineation groups whose coefficients lie in the G F ( 2 n ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GF(2^n)$$\end{document}. Ann. Math., 1925, 27: 140-158,
CrossRef Google scholar
[9.]
Huppert B, Blackburn H. . Finite groups II, 1982 Berlin Springer,
CrossRef Google scholar
[10.]
Huppert B. . Endliche Gruppen I, 1967 Berlin Springer,
CrossRef Google scholar
[11.]
Isaacs MI. . Finite Group Theory, 2008 Providence, RI American Mathematical Society
[12.]
Janko Z. Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen. Math. Z, 1962, 79: 422-424,
CrossRef Google scholar
[13.]
Kurzweil H, Stellmacher B. . The Theory of Finite Groups. An introduction, 2004 Berlin Springer,
CrossRef Google scholar
[14.]
Li SR. Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups. Math. Proc. R. Ir. Acad, 2000, 100A(1): 65-71
[15.]
Malle G, Navarro G, Späth B. Invariant blocks under coprime actions. Doc. Math., 2015, 20: 491-506,
CrossRef Google scholar
[16.]
Meng W, Chen W, Lu J. Finite groups with abelian second maximal subgroups. Commun. Algebra, 2020, 48(4): 1577-1583,
CrossRef Google scholar
[17.]
Shao CG, Beltrán A. Invariant TI-subgroups and structure of finite groups. J. Pure Appl. Algebra, 2021, 225(4): 106566,
CrossRef Google scholar
[18.]
Thompson JG. Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Amer. Math. Soc., 1968, 74(3): 383-437,
CrossRef Google scholar
[19.]
Walls G. Trivial intersection groups. Arch. Math., 1979, 32: 1-4,
CrossRef Google scholar
Funding
National Nature Science Fund of China(12071181); Nature Science Fund of Shandong Province(ZR2020MA003); Ministerio de Ciencia Tecnología y Telecomunicaciones (CR)(PGC2018-096872-B-100); Universitat Jaume I(UJI-B2019-03); Generalitat Valenciana(Proyecto AICO/2020/298)

Accesses

Citations

Detail

Sections
Recommended

/