Second Maximal Invariant Subgroups and Solubility of Finite Groups

Changguo Shao , Antonio Beltrán

Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (1) : 45 -54.

PDF
Communications in Mathematics and Statistics ›› 2022, Vol. 12 ›› Issue (1) : 45 -54. DOI: 10.1007/s40304-021-00279-y
Article

Second Maximal Invariant Subgroups and Solubility of Finite Groups

Author information +
History +
PDF

Abstract

Let G be a finite group and assume that a group of automorphisms A is acting on G such that A and G have coprime orders. We prove that the fact of imposing specific properties on the second maximal A-invariant subgroups of G determines that G is either soluble or isomorphic to a few non-soluble groups such as PSL(2, 5) or SL(2, 5).

Keywords

Invariant subgroups / Coprime action / Second maximal subgroup / Trivial intersection subgroup

Cite this article

Download citation ▾
Changguo Shao, Antonio Beltrán. Second Maximal Invariant Subgroups and Solubility of Finite Groups. Communications in Mathematics and Statistics, 2022, 12(1): 45-54 DOI:10.1007/s40304-021-00279-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belonogov, V.A.: Finite solvable groups with nilpotent 2-maximal subgroups, Mat. Zametki 3, 21-32 (1968); translation in Math. Notes 3, 15–21 (1968)

[2]

Beltrán A, Shao CG. Restrictions on maximal invariant subgroups implying solubility of finite groups. Ann. Mat. Pura Appl.. 2019, 4 198 357-366

[3]

Beltrán A, Shao CG. Invariant class sizes and solvability of finite groups under coprime action. Math. Nach.. 2016, 289 2–3 187-193

[4]

Beltrán A. Action with nilpotent fixed point subgroup. Arch. Math.. 1997, 69 3 177-184

[5]

Conway JH, Curtis RT, Norton SP, Parker RA, Wilson RA. Atlas of Finite Groups. 1985 London: Oxford University Press

[6]

Gorenstein D, Lyons R, Solomon R. The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs. 1998 Providence: American Mathematical Society

[7]

Gèrono GC. Note sur la résolution en nombres entiers et positifs de l’équation $x^m=y^n -1$. Nouv. Ann. Math.. 1870, 2 9 469-471

[8]

Hartley R. Determination of the ternary collineation groups whose coefficients lie in the $GF(2^n)$. Ann. Math.. 1925, 27 140-158

[9]

Huppert B, Blackburn H. Finite groups II. 1982 Berlin: Springer

[10]

Huppert B. Endliche Gruppen I. 1967 Berlin: Springer

[11]

Isaacs MI. Finite Group Theory. 2008 Providence, RI: American Mathematical Society

[12]

Janko Z. Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen. Math. Z. 1962, 79 422-424

[13]

Kurzweil H, Stellmacher B. The Theory of Finite Groups. An introduction. 2004 Berlin: Springer

[14]

Li SR. Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups. Math. Proc. R. Ir. Acad. 2000, 100A 1 65-71

[15]

Malle G, Navarro G, Späth B. Invariant blocks under coprime actions. Doc. Math.. 2015, 20 491-506

[16]

Meng W, Chen W, Lu J. Finite groups with abelian second maximal subgroups. Commun. Algebra. 2020, 48 4 1577-1583

[17]

Shao CG, Beltrán A. Invariant TI-subgroups and structure of finite groups. J. Pure Appl. Algebra. 2021, 225 4 106566

[18]

Thompson JG. Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Amer. Math. Soc.. 1968, 74 3 383-437

[19]

Walls G. Trivial intersection groups. Arch. Math.. 1979, 32 1-4

Funding

National Nature Science Fund of China(12071181)

Nature Science Fund of Shandong Province(ZR2019MA044)

Ministerio de Ciencia Tecnología y Telecomunicaciones (CR)(PGC2018-096872-B-100)

Universitat Jaume I(UJI-B2019-03)

Generalitat Valenciana(Proyecto AICO/2020/298)

AI Summary AI Mindmap
PDF

214

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/