PDF
Abstract
Consider the following McKean–Vlasov SDE:
$\begin{aligned} \textrm{d} X_t=\sqrt{2}\textrm{d} W_t+\int _{{\mathbb {R}}^d}K(t,X_t-y)\mu _{X_t}(\textrm{d} y)\textrm{d} t,\ \ X_0=x, \end{aligned}$
where
$\mu _{X_t}$ stands for the distribution of
$X_t$ and
$K(t,x): {{\mathbb {R}}}_+\times {{\mathbb {R}}}^d\rightarrow {{\mathbb {R}}}^d$ is a time-dependent divergence free vector field. Under the assumption
$K\in L^q_t({\widetilde{L}}_x^p)$ with
$\frac{d}{p}+\frac{2}{q}<2$, where
${\widetilde{L}}^p_x$ stands for the localized
$L^p$-space, we show the existence of weak solutions to the above SDE. As an application, we provide a new proof for the existence of weak solutions to 2D Navier–Stokes equations with measure as initial vorticity.
Keywords
McKean–Vlasov system
/
Supercritical drift
/
2D Navier–Stokes equation
/
Krylov’s estimate
Cite this article
Download citation ▾
Xicheng Zhang.
Weak Solutions of McKean–Vlasov SDEs with Supercritical Drifts.
Communications in Mathematics and Statistics, 2023, 12(1): 1-14 DOI:10.1007/s40304-021-00277-0
| [1] |
Carmona R, Delarue F. Probabilistic Theory of Mean Field Games with Applications. II. Mean Field Games with Common Noise and Master Equations. 2018 Berlin: Springer
|
| [2] |
Cottet GH. Equations de Navier–Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sci. Paris Sér. I Math.. 1986, 303 105-108
|
| [3] |
Funaki T. A certain class of diffusion processes associated with nonlinear parabolic equations. Prob. Theory Relat. Fields. 1984, 67 3 331-348
|
| [4] |
Gallagher I, Gallay T. Uniqueness for the two-dimensional Navier–Stokes equation with a measure as initial vorticity. Math. Ann.. 2005, 332 287-327
|
| [5] |
Giga Y, Miyakawa T, Osada H. Two-dimensional Naveri–Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal.. 1988, 104 223-250
|
| [6] |
Huang X, Wang FY. Distribution dependent SDEs with singular coefficients. Stochastic Process. Appl.. 2019, 129 11 4747-4770
|
| [7] |
Jabin PE, Wang Z. Quantitative estimates of propagation of chaos for stochastic systems with $W^{-1,\infty }$ kernels. Invent. math.. 2018, 214 523-591
|
| [8] |
Li J, Min H. Weak solutions of mean-field stochastic differential equations and application to zero-sum stochastic differential games. SIAM J. Control Optim.. 2016, 54 3 1826-1858
|
| [9] |
Majda AJ, Bertozzi AL. Vorticity and Impressible Flow. 2002 Cambridge: Cambridge University Press
|
| [10] |
McKean HP. A class of Markov processes associated with nonlinear parabolic equations. Proc Nat. Acad Sci USA. 1966, 56 6 1907-1911
|
| [11] |
Mishura, Y.S., Veretennikov, A.Y.: Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations, arXiv:1603.02212v4
|
| [12] |
Röckner M, Zhang X. Well-posedness of distribution dependent SDEs with singular drifts. Bernoulli. 2021, 27 2 1131-1158
|
| [13] |
Stroock DW, Varadhan SS. Multidimensional Diffusion Processes. 1979 Berlin: Springer-Verlag
|
| [14] |
Sznitman, A.S.: Topics in propagation of chaos. In: École d’Été de Prob. de Saint-Flour XIX-1989, Vol. 1464, Lecture Notes in Mathematics, pp. 165-251. Springer-Verlag (1991)
|
| [15] |
Trevisan D. Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab.. 2016, 21 41
|
| [16] |
Zhang, X., Zhao, G.: Singular Brownian Diffusion Processes. Communications in Mathematics and Statistics, pp. 1-49 (2018)
|
| [17] |
Zhang X, Zhao G. Stochastic Lagrangian path for Leray solutions of 3D Navier–Stokes equations. Comm. Math. Phys.. 2021, 381 2 491-525
|