Weak Solutions of McKean–Vlasov SDEs with Supercritical Drifts
Xicheng Zhang
Communications in Mathematics and Statistics ›› 2023, Vol. 12 ›› Issue (1) : 1-14.
Weak Solutions of McKean–Vlasov SDEs with Supercritical Drifts
Consider the following McKean–Vlasov SDE:
McKean–Vlasov system / Supercritical drift / 2D Navier–Stokes equation / Krylov’s estimate
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
Mishura, Y.S., Veretennikov, A.Y.: Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations, arXiv:1603.02212v4
|
[12.] |
|
[13.] |
|
[14.] |
Sznitman, A.S.: Topics in propagation of chaos. In: École d’Été de Prob. de Saint-Flour XIX-1989, Vol. 1464, Lecture Notes in Mathematics, pp. 165-251. Springer-Verlag (1991)
|
[15.] |
|
[16.] |
Zhang, X., Zhao, G.: Singular Brownian Diffusion Processes. Communications in Mathematics and Statistics, pp. 1-49 (2018)
|
[17.] |
|
/
〈 |
|
〉 |