Despite recent advances in the detection and treatment of breast cancer, many shortcomings remain, providing incentives to search for new therapeutic targets. This review provides information on the expression and actions of dopamine receptor-1 (D1R) in breast cancer. D1R is overexpressed in a significant number of primary breast tumors, characterized by having an aggressive phenotype and predicting a shorter survival time for patients. Activation of D1R in breast cancer cells by selective agonists caused suppression of cell viability, stimulation of apoptosis, inhibition of cell invasion, and an increase in chemosensitivity. Instead of being linked to the cAMP/PKA system as expected, D1R in breast cancer is linked to the activation of the cGMP/protein kinase G (PKG) pathway. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed the growth of breast cancer xenografts in immune-deficient mice. A new imaging system for detecting D1R-expressing tumors and metastases was also developed. The review offers a novel concept that D1R can serve as a biomarker for prognosis in advanced breast cancer and its agonists can be used as effective and personalized therapeutics in a subpopulation of patients with D1R-expressing breast tumors. Several drugs, some of which are FDA-approved, that bypass the D1R and directly activate the cGMP/PKG apoptotic system, are also identified.
Neuroblastoma (NB) is the most common cancer of infancy and accounts for nearly one tenth of pediatric cancer deaths. This mortality rate has been attributed to the > 50% frequency of relapse despite intensive, multimodal clinical therapy in patients with progressive NB. Given the disease’s heterogeneity and developed resistance, attaining a cure after relapse of progressive NB is highly challenging. A rapid decrease in the timeline between successive recurrences is likely due to the ongoing acquisition of genetic rearrangements in undifferentiated NB-cancer stem cells (CSCs). In this review, we present the current understanding of NB-CSCs, their intrinsic role in tumorigenesis, their function in disease progression, and their influence on acquired therapy resistance and tumor evolution. In particular, this review focus on the intrinsic involvement of stem cells and signaling in the genesis of NB, the function of pre-existing CSCs in NB progression and therapy response, the formation and influence of induced CSCs (iCSCs) in drug resistance and tumor evolution, and the development of a CSC-targeted therapeutic approach.
Colorectal cancer (CRC) still remains a disease with high percentage of death, principally due to therapy resistance and metastasis. During the time the hypothesis has been reinforced that CRC stem cells (CRCSC) are involved in allowing intratumoral heterogeneity, drug escape mechanisms and secondary tumors. CRCSC are characterized by specific surface markers (i.e., CD44 and CD133), signaling pathways activation (i.e., Wnt and Notch) and gene expression (i.e., Oct4 and Snail), which confer to CRCSC self-renewal abilities and pluripotent capacity. Interleukin (IL)-8 is correlated to CRC progression, development of liver metastases and chemoresistance; moreover, IL-8 modulates not only stemness maintenance but also stemness promotion, such as epithelial-mesenchymal transition. This review wants to give a brief and up-to-date overview on IL-8 implication in CRCSC cues.
Recent advances in pharmacological immune modulation against tumor cells has dramatically changed the paradigm of cancer treatment. Checkpoint inhibitor therapy is a form of cancer immunotherapy already in clinical setting but also under active basic and clinical investigation. Nevertheless, some patients are primary unresponsive or develop ulterior resistance to these family of drugs. This review aims to update the basic molecular mechanism of resistance as well as the current strategies for checkpoint inhibitor selection in order to propose new approaches to individualize the use of these novel therapies.
Topoisomerases are well-validated targets for cancer chemotherapy and DNA topoisomerase 1 (Top1) is the sole target of the camptothecin (CPT) class of anticancer drugs. Over the last 20 years, multiple studies have shown Top1 activity is modulated by non-native DNA structures and this can lead to trapping of Top1 cleavage complexes (Top1cc) and conversion to DNA double strand breaks. Among the perturbations to DNA structure that generate Top1cc are nucleoside analogs that are incorporated into genomic DNA during replication including cytarabine, gemcitabine, and 5-fluoro-2’-deoxyuridine (FdU). We review the literature summarizing the role of Top1cc in mediating the DNA damaging and cytotoxic activities of nucleoside analogs. We also summarize studies demonstrating distinct differences between Top1cc induced by nucleoside analogs and CPTs, particularly with regard to DNA repair. Collectively, these studies demonstrate that, while Top1 is a common target for both Top1 poisons such as CPT and nucleoside analogs such as FdU, these agents are not redundant. In recent years, studies have shown that Top1 poisons and nucleoside analogs together with other anti-cancer drugs such as cisplatin cause replication stress and the DNA repair pathways that modulate the cytotoxic activities of these compounds are being elucidated. We present an overview of this evolving literature, which has implications for how targeting of Top1 with nucleoside analogs can be used more effectively for cancer treatment.
LncRNAs are defined as RNA transcripts greater than 200 nucleotides in length that have no or limited protein-coding potential. Basal expression of lncRNAs appeared important for various homeostatic processes, like gene imprinting cell differentiation and organogenesis. Moreover, it has been demonstrated that lncRNAs play an important role in tumorigenesis and metastasis. Some lncRNAs were stably detected in exosomes, which are widely found in body fluids. Several studies validated the use of exosomal lncRNAs as minimally invasive diagnostic and prognostic markers in several types of cancers. In addition, exosomal lncRNAs have been associated with drug resistance of tumor cells, suggesting a clinical application in cancer-targeted therapy. Despite the recent increase of studies on exosomal lncRNAs, their clinical significance in cancer diagnosis, prognosis and treatment needs to be fully explored. The methodologies for their detection with high purity and accuracy must be also improved in order to implement their use in clinical routine. This review aims to summarize the main recent technologies available for the isolation of exosomal lncRNAs, their status as a liquid biopsy as well as their future perspectives.
Glioblastoma multiforme is the most common and lethal brain tumour-type. The current standard of care includes Temozolomide (TMZ) chemotherapy. However, inherent and acquired resistance to TMZ thwart successful treatment. The direct repair protein methylguanine DNA methyltransferase (MGMT) removes the cytotoxic O6-methylguanine (O6-MeG) lesion delivered by TMZ and so its expression by tumours confers TMZ-resistance. DNA mismatch repair (MMR) is essential to process O6-MeG adducts and MMR-deficiency leads to tolerance of lesions, resistance to TMZ and further DNA mutations. In this article, two strategies to overcome TMZ resistance are discussed: (1) synthesis of imidazotetrazine analogues - designed to retain activity in the presence of MGMT or loss of MMR; (2) preparation of imidazotetrazine-nanoparticles to deliver TMZ preferably to the brain and tumour site. Our promising results encourage belief in a future where better prognoses exist for patients diagnosed with this devastating disease.
The majority of scientists working in the field of cancer experimental therapeutics recognize that many drugs that claim to be “specific” for one target enzyme in fact regulate to varying degrees the activities of other additional protein targets. Some of these targets are known and are recognized as being an essential component of a drug’s biology. However, many other targets fall into the category of “unknown unknowns”. Thus, the collective therapeutic outcome for almost all clinically relevant drugs is reliant on both the claimed primary and secondary “on” targets as well as some of the unexpected unknown “off” targets. This review discusses the biology of several FDA approved cancer therapeutic drugs whose initial reported targets only represented the tip-of-the-iceberg in terms of how each agent acted as an anti-tumor drug. The review also discusses a putative thorough pre-visualization methodology for drug-based research, prior to executing any wet work. These approaches should be performed in an agnostic fashion and be based in part on the clinically safe drug’s C max and its area under the curve in a patient. Based on tumor heterogeneity, considerations of how to approach developmental therapeutics in the age of “personalized medicine” are also discussed.
Hematologic malignancies are the most common type of cancer affecting children and young adults, and encompass diseases, such as leukemia, lymphoma, and myeloma, all of which impact blood associated tissues such as the bone marrow, lymphatic system, and blood cells. Clinical diagnostics of these malignancies relies heavily on the use of bone marrow samples, which is painful, debilitating, and not free from risks for leukemia patients. Liquid biopsies are based on minimally invasive assessment of markers in the blood (and other fluids) and have the potential to improve the efficacy of diagnostic/therapeutic strategies in leukemia patients, providing a useful tool for the real time molecular profiling of patients. The most promising noninvasive biomarkers are circulating tumor cells, circulating tumor DNA, microRNAs, and exosomes. Herein, we discuss the role of assessing these circulating biomarkers for the understanding of tumor progression and metastasis, tumor progression dynamics through treatment and for follow-up.
The spread of single tumor cells shed by the primary tumor has been observed in most solid carcinomas and is generally associated with poor clinical outcome. Tumor cells detected in the peripheral blood are commonly referred to as circulating tumor cells (CTCs) and are seen as possible precursors of metastatic disease. Beyond CTCs, circulating tumor DNA and non-coding RNA are increasingly the focus of translation cancer research. In metastatic breast cancer (MBC), elevated levels of CTCs have been confirmed as an independent prognostic factor. While detection of elevated counts after the start of systemic therapy predicts poor response, it is unclear which treatment strategy should be offered in the case of CTC persistence. Currently, the main potentials of blood-based diagnostics in BC are therapy monitoring and liquid biopsy-based treatment interventions. Recently, the first positive study on CTC-guided therapy choices in hormone receptor positive HER2 negative MBC was published. In the present review, we discuss the current data and potential clinical application of liquid biopsy in the metastatic setting.
Delineating the contributions of specific cell signalling cascades to the development and maintenance of tumours has greatly informed our understanding of tumorigenesis and has advanced the modern era of targeted cancer therapy. It has been revealed that one of the key pathways regulating cell growth, the phosphatidylinositol 3-kinase/mechanistic target of rapamycin (PI3K/mTOR) signalling axis, is commonly dysregulated in cancer. With a specific, well-tolerated inhibitor of mTOR available, the impact of inhibiting this pathway at the level of mTOR has been tested clinically. This review highlights some of the promising results seen with mTOR inhibitors in the clinic and assesses some of the challenges that remain in predicting patient outcome following mTOR-targeted therapy.
Neuroblastoma (NB) deriving from neural crest cells is the most common extra-cranial solid cancer at infancy. NB originates within the peripheral sympathetic ganglia in adrenal medulla and along the midline of the body. Clinically, NB exhibits significant heterogeneity stretching from spontaneous regression to rapid progression to therapy resistance. MicroRNAs (miRNAs, miRs) are small (19-22 nt in length) non-coding RNAs that regulate human gene expression at the post-transcriptional level and are known to regulate cellular signaling, growth, differentiation, death, stemness, and maintenance. Consequently, the function of miRs in tumorigenesis, progression and resistance is of utmost importance for the understanding of dysfunctional cellular pathways that lead to disease evolution, therapy resistance, and poor clinical outcomes. Over the last two decades, much attention has been devoted to understanding the functional roles of miRs in NB biology. This review focuses on highlighting the important implications of miRs within the context of NB disease progression, particularly miRs’ influences on NB disease evolution and therapy resistance. In this review, we discuss the functions of both the “oncomiRs” and “tumor suppressor miRs” in NB progression/therapy resistance. These are the critical components to be considered during the development of novel miR-based therapeutic strategies to counter therapy resistance.
Resistance to targeted anti-cancer drugs is a complex phenomenon and a major challenge in cancer treatment. It is becoming increasingly evident that a form of acquired drug resistance known as “adaptive resistance” is a common cause of treatment failure and patient relapse in many cancers. Unlike classical resistance mechanisms that are acquired via genomic alterations, adaptive resistance is instead driven by non-genomic changes involving rapid and dynamic rewiring of signalling and/or transcriptional networks following therapy, enabled by complex pathway crosstalk and feedback regulation. Such network rewiring allows tumour cells to adapt to the drug treatment, circumvent the initial drug challenge and continue to survive in the presence of the drug. Despite its great clinical importance, adaptive resistance remains largely under-studied and poorly defined. This review is focused on recent findings which provide new insights into the mechanisms underlying adaptive resistance in breast cancer, highlighting how breast tumour cells rewire intracellular signalling pathways to overcome the stress of initial targeted therapy. In particular, we investigate adaptive resistance to targeted inhibition of two major oncogenic signalling axes frequently dysregulated in breast cancer, the PI3K-AKT-mTOR and RAS-MAPK signalling pathways; and discuss potential combination treatment strategies that overcome such resistance. In addition, we highlight application of quantitative and computational modelling as a novel integrative and powerful approach to gain network-level understanding of network rewiring, and rationally identify and prioritise effective drug combinations.
Investigating the biological processes that occur to enable recurrence and the development of chemoresistance in ovarian cancer is critical to the research and development of improved treatment options for patients. The lethality of ovarian cancer is largely attributed to the recurrence of disease with acquired chemoresistance. Cancer stem cells are likely to be critical in ovarian cancer progression, contributing to tumour malignancy, metastasis and recurrence by persisting in the body despite treatment with anti-cancer drugs. Moreover, cancer stem cells are capable of mediating epithelial-to-mesenchymal transition traits and secrete extracellular vesicles to acquire therapy resistance and disease dissemination. These attributes merit in depth research to provide insight into the biological role of ovarian cancer stem cells in disease progression and chemotherapy response, leading to the development of improved biomarkers and innovative therapeutic approaches.
Initiation, progression, outcome and sensibility to therapies in breast cancer (BC), the most frequent cancer in women, are driven by somatic and germline mutations. Although the effectiveness of hormonal therapies is well-founded, it is prescribed for cancers which express steroid hormone receptors, such as estrogen receptor (ER). RET is a proto-oncogene encoding a transmembrane tyrosine kinase receptor that is activated by one of its four ligands (GDNF, neurturin, artemin or persephin) and one of its coreceptors (Gfrα1-4). Loss-of-function mutations in RET are responsible for Hirschsprung disease, while gain-of-function mutations for multiple endocrine neoplasia type 2. In addition, deregulation of its intracellular signaling, due to mutations, gene rearrangements, overexpression or transcriptional upregulation, can cause several neuroendocrine and epithelial tumors. In BC, amplification of receptor tyrosine kinases, such as ERBB2, EGFR, IGFR and FGFR1, and/or their upregulation contribute to cancer initiation and progression. RET can also have an important role in BC, but only in the subset of ER-positive (ER+) tumors, where it is found overexpressed. Targeting the RET pathway and shedding light on molecular basis of the resistance to hormone therapy may lead to new therapies in ER+ BC, improving treatment outcome and preventing tumor-related events. Thus, here, we review the state of the art of RET biology in BC and agents targeting RET tested in the clinical trials and discuss the specificity of the still available RET inhibitors and the molecular mechanisms underlying the BC resistance to endocrine therapy.
Our genomic DNA is under constant assault from endogenous and exogenous sources, which needs to be resolved to maintain cellular homeostasis. The eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the hydrolysis of phosphodiester bonds that covalently link adducts to DNA-ends. Tdp1 utilizes two catalytic histidines to resolve a growing list of DNA-adducts. These DNA-adducts can be divided into two groups: small adducts, including oxidized nucleotides, RNA, and non-canonical nucleoside analogs, and large adducts, such as (drug-stabilized) topoisomerase- DNA covalent complexes or failed Schiff base reactions as occur between PARP1 and DNA. Many Tdp1 substrates are generated by chemotherapeutics linking Tdp1 to cancer drug resistance, making a compelling argument to develop small molecules that target Tdp1 as potential novel therapeutic agents. Tdp1’s unique catalytic cycle, which is centered on the formation of Tdp1-DNA covalent reaction intermediate, allows for two principally different targeting strategies: (1) catalytic inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of DNA-adducts that enhances the effectivity of chemotherapeutics; and (2) poisoning of Tdp1 by stabilization of the Tdp1- DNA covalent reaction intermediate, which would increase the half-life of a potentially toxic DNA-adduct by preventing its resolution, analogous to topoisomerase targeted poisons such as topotecan or etoposide. The catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy best illustrates this concept; however, no small molecules have been reported for this strategy. Herein, we concisely discuss the development of Tdp1 catalytic inhibitors and their results.
Acute lymphoblastic leukemia (ALL) is a malignancy of immature lymphoid cells that arises due to clonal expansion of cells that undergo developmental arrest and acquisition of pathogenic mutations. With the introduction of intensive multi-agent chemotherapeutic regimens, survival rates for ALL have improved dramatically over the past several decades, though survival rates for adult ALL continue to lag behind those of pediatric ALL. Resistance to chemotherapy remains a significant obstacle in the treatment of ALL, and chemoresistance due to molecular alterations within ALL cells have been described. In addition to these cell-intrinsic factors, the bone marrow microenvironment has more recently been appreciated as a cell-extrinsic mediator of chemoresistance, and it is now known that stromal cells within the bone marrow microenvironment, through direct cell-cell interactions and through the release of lymphoid-acting soluble factors, contribute to ALL pathogenesis and chemoresistance. This review discusses mechanisms of chemoresistance mediated by factors within the bone marrow microenvironment and highlights novel therapeutic strategies that have been investigated to overcome chemoresistance in this context.
One of the major challenges in oncology is drug resistance, which triggers relapse and shortens patients’ survival. In order to promote drug desensitization, cancer cells require the establishment of an ideal tumor microenvironment that accomplishes specific conditions. To achieve this objective, cellular communication is a key factor. Classically, cells were believed to restrictively communicate by ligand-receptor binding, physical cell-to-cell interactions and synapses. Nevertheless, the crosstalk between tumor cells and stroma cells has also been recently reported to be mediated through exosomes, the smallest extracellular vesicles, which transport a plethora of functionally active molecules, such as: proteins, lipids, messenger RNA, DNA, microRNA or long non-coding RNA (lncRNAs). LncRNAs are RNA molecules greater than 200 base pairs that are deregulated in cancer and other diseases. Exosomal lncRNAs are highly stable and can be found in several body fluids, being considered potential biomarkers for tumor liquid biopsy. Exosomal lncRNAs promote angiogenesis, cell proliferation and drug resistance. The role of exosomal lncRNAs in drug resistance affects the main treatment strategies in oncology: chemotherapy, targeted therapy, hormone therapy and immunotherapy. Overall, knowing the molecular mechanisms by which exosomal lncRNA induce pharmacologic resistance could improve further drug development and identify drug resistance biomarkers.
Aim: Aberrant microRNA expression is a common event in cancer drug resistance, however its involvement in malignant pleural mesothelioma (MPM) drug resistance is largely unexplored. We aimed to investigate the contribution of microRNAs to the resistance to drugs commonly used in the treatment of MPM.
Methods: Drug resistant MPM cell lines were generated by treatment with cisplatin, gemcitabine or vinorelbine. Expression of microRNAs was quantified using RT-qPCR. Apoptosis and drug sensitivity assays were carried out following transfection with microRNA mimics or BCL2 siRNAs combined with drugs.
Results: Expression of miR-15a, miR-16 and miR-34a was downregulated in MPM cells with acquired drug resistance. Transfection with miR-15a or miR-16 mimics reversed the resistance to cisplatin, gemcitabine or vinorelbine, whereas miR-34a reversed cisplatin and vinorelbine resistance only. Similarly, in parental cell lines, miR-15a or miR-16 mimics sensitised cells to all drugs, whereas miR-34a increased response to cisplatin and vinorelbine. Increased microRNA expression increased drug-induced apoptosis and caused BCL2 mRNA and protein reduction. RNAi-mediated knockdown of BCL2 partly recapitulated the increase in drug sensitivity in cisplatin and vinorelbine treated cells.
Conclusion: Drug-resistant MPM cell lines exhibited reduced expression of tumour suppressor microRNAs. Increasing tumour suppressor of microRNA expression sensitised both drug resistant and parental cell lines to chemotherapeutic agents, in part through targeting of BCL2. Taken together, these data suggest that miR-15a, miR-16 and miR-34a are involved in the acquired and intrinsic drug resistance phenotype of MPM cells.
We recently reported our detection of an anthropoid primate-specific, adrenal androgen-dependent, “kill switch” tumor suppression mechanism that is triggered by the inactivation of the p53 tumor suppressor. This mechanism reached its highest expression only in humans as a result of the human-specific harnessing of fire, which resulted in an extraordinary increase in exposure to polycyclic aromatic hydrocarbons. This “kill switch” becomes inoperative in modern humans once they exceed the primitive human lifespan of 25-30 years, because lifespan has more than tripled in modern times, but the secretion curve for dehydroepiandrosterone sulfate remains fixed at the level required for the primitive human lifespan. Components of this “kill switch” are consequently usurped by human tumors, and these are already targets for inhibition in cancer chemotherapy. Here, we suggest a different strategy: using the usurped components of the kill switch to activate prodrugs, rather than as targets for inhibition. This strategy is in its infancy, but has the potential to enable more tumor-specific cytotoxicity, which the inhibition strategy generally cannot achieve. Detection of the usurpation of kill switch elements in liquid biopsy analyses enables the collection of information relevant to this new class of tumor biomarkers without the necessity of invasive tissue biopsy.
Liquid biopsies represent an attractive, minimally-invasive alternative to surgical sampling or complex imaging of breast cancer and breast cancer metastasis. Here we present a summary of the major biomarker components often evaluated in liquid biopsy samples from patients with breast cancer, including circulating tumor cells, circulating cell-free tumor DNA, and cancer-associated plasma proteins. We discuss recent advancements in methods of detection and use of these biomarkers in breast cancer. Finally, we highlight some of our own recent contributions to breast cancer liquid biopsy, including the identification and characterization of circulating Cancer Associated Fibroblasts.