Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review

Yiting Ze, Yongyao Wu, Zhen Tan, Rui Li, Rong Li, Wenzhen Gao, Qing Zhao

Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 0.

Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 0. DOI: 10.1038/s41413-025-00403-6
Review Article

Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review

Author information +
History +

Abstract

Circadian rhythm is ubiquitous in nature. Circadian clock genes such as Bmal1 and Clock form a multi-level transcription-translation feedback network, and regulate a variety of physiological and pathological processes, including bone and cartilage metabolism. Deletion of the core clock gene Bmal1 leads to pathological bone alterations, while the phenotypes are not consistent. Studies have shown that multiple signaling pathways are involved in the process of Bmal1 regulating bone and cartilage metabolism, but the exact regulatory mechanisms remain unclear. This paper reviews the signaling pathways by which Bmal1 regulates bone/cartilage metabolism, the upstream regulatory factors that control Bmal1, and the current Bmal1 knockout mouse models for research. We hope to provide new insights for the prevention and treatment of bone/cartilage diseases related to circadian rhythms.

Cite this article

Download citation ▾
Yiting Ze, Yongyao Wu, Zhen Tan, Rui Li, Rong Li, Wenzhen Gao, Qing Zhao. Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review. Bone Research, 2025, 13(1): 0 https://doi.org/10.1038/s41413-025-00403-6

References

[1.]
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet., 2017, 18: 164-179.
CrossRef Google scholar
[2.]
Curtis AM, Bellet MM, Sassone-Corsi P, O’Neill LAJ. Circadian clock proteins and immunity. Immunity, 2014, 40: 178-186.
CrossRef Google scholar
[3.]
Pendergrast, L. A. et al. Metabolic plasticity and obesity-associated changes in diurnal postexercise metabolism in mice. Metabolism. 155, 155834 (2024).
[4.]
Her TK, et al.. Circadian disruption across lifespan impairs glucose homeostasis and insulin sensitivity in adult mice. Metabolites, 2024, 14: 126.
CrossRef Google scholar
[5.]
Rogers N, Meng Q-J. Tick tock, the cartilage clock. Osteoarthr. Cartil., 2023, 31: 1425-1436.
CrossRef Google scholar
[6.]
Li W, et al.. Circadian biology and the neurovascular unit. Circ. Res., 2024, 134: 748-769.
CrossRef Google scholar
[7.]
Takahashi JS, Hong H-K, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet., 2008, 9: 764-775.
CrossRef Google scholar
[8.]
Laothamatas I, Rasmussen ES, Green CB, Takahashi JS. Metabolic and chemical architecture of the mammalian circadian clock. Cell Chem. Biol., 2023, 30: 1033-1052.
CrossRef Google scholar
[9.]
Bunger MK, et al.. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 2000, 103: 1009-1017.
CrossRef Google scholar
[10.]
Schibler U. BMAL1 dephosphorylation determines the pace of the circadian clock. Genes Dev., 2021, 35: 1076-1078.
CrossRef Google scholar
[11.]
Song C, et al.. Insights into the role of circadian rhythms in bone metabolism: a promising intervention target?. BioMed. Res. Int., 2018, 2018: 9156478.
CrossRef Google scholar
[12.]
Cao X, Yang Y, Selby CP, Liu Z, Sancar A. Molecular mechanism of the repressive phase of the mammalian circadian clock. Proc. Natl. Acad. Sci. USA, 2021, 118. e2021174118
CrossRef Google scholar
[13.]
Martin RA, Viggars MR, Esser KA. Metabolism and exercise: the skeletal muscle clock takes centre stage. Nat. Rev. Endocrinol., 2023, 19: 272-284.
CrossRef Google scholar
[14.]
Gao W, et al.. The circadian clock has roles in mesenchymal stem cell fate decision. Stem Cell Res. Ther., 2022, 13: 200.
CrossRef Google scholar
[15.]
Housman G, Briscoe E, Gilad Y. Evolutionary insights into primate skeletal gene regulation using a comparative cell culture model. PLoS Genet., 2022, 18: e1010073.
CrossRef Google scholar
[16.]
Barui A, Chowdhury F, Pandit A, Datta P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials, 2018, 156: 28-44.
CrossRef Google scholar
[17.]
Su, Y.-C. et al. Study of chondrogenesis of umbilical cord mesenchymal stem cells in curdlan- poly(vinyl alcohol) composite hydrogels and its mechanical properties of freezing-thawing treatments. Int. J. Biol. Macromol. 265, 130792 (2024).
[18.]
Li Y, et al.. SOD2 promotes the immunosuppressive function of mesenchymal stem cells at the expense of adipocyte differentiation. Mol. Ther. J. Am. Soc. Gene Ther., 2024, S1525-0016: 00031-00035
[19.]
Yuan G, Lin X, Liu Y, Greenblatt MB, Xu R. Skeletal stem cells in bone development, homeostasis and disease. Protein Cell, 2024, 15: 559-574.
CrossRef Google scholar
[20.]
Serra-Vinardell J, et al.. Bone development and remodeling in metabolic disorders. J. Inherit. Metab. Dis., 2020, 43: 133-144.
CrossRef Google scholar
[21.]
Scotti C, et al.. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc. Natl. Acad. Sci. USA, 2010, 107: 7251-7256.
CrossRef Google scholar
[22.]
Redmond J, et al.. Diurnal rhythms of bone turnover markers in three ethnic groups. J. Clin. Endocrinol. Metab., 2016, 101: 3222-3230.
CrossRef Google scholar
[23.]
Chen G, et al.. The biological function of BMAL1 in skeleton development and disorders. Life Sci., 2020, 253: 117636.
CrossRef Google scholar
[24.]
Zhu M, et al.. BMAL1 suppresses ROS-induced endothelial-to-mesenchymal transition and atherosclerosis plaque progression via BMP signaling. Am. J. Transl. Res., 2018, 10: 3150-3161
[25.]
Tsang K, Liu H, Yang Y, Charles JF, Ermann J. Defective circadian control in mesenchymal cells reduces adult bone mass in mice by promoting osteoclast function. Bone, 2019, 121: 172-180.
CrossRef Google scholar
[26.]
Dudek M, et al.. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity. J. Clin. Investig., 2016, 126: 365-376.
CrossRef Google scholar
[27.]
Reale ME, et al.. The transcription factor Runx2 is under circadian control in the suprachiasmatic nucleus and functions in the control of rhythmic behavior. PLoS One, 2013, 8: e54317.
CrossRef Google scholar
[28.]
Stegen S, Carmeliet G. Metabolic regulation of skeletal cell fate and function. Nat. Rev. Endocrinol, 2024, 20: 399-413.
CrossRef Google scholar
[29.]
Anloague A, Delgado-Calle J. Osteocytes: new kids on the block for cancer in bone therapy. Cancers, 2023, 15: 2645.
CrossRef Google scholar
[30.]
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature, 2003, 423: 337-342.
CrossRef Google scholar
[31.]
Weivoda MM, et al.. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat. Commun., 2020, 11. 87
CrossRef Google scholar
[32.]
Chen S, Chen X, Geng Z, Su J. The horizon of bone organoid: a perspective on construction and application. Bioact. Mater., 2022, 18: 15-25
[33.]
Feskanich D, Hankinson SE, Schernhammer ES. Nightshift work and fracture risk: the Nurses’ Health Study. Osteoporos. Int., 2009, 20: 537-542.
CrossRef Google scholar
[34.]
Swanson CM, et al.. The importance of the circadian system & sleep for bone health. Metabolism, 2018, 84: 28-43.
CrossRef Google scholar
[35.]
Everson CA, Folley AE, Toth JM. Chronically inadequate sleep results in abnormal bone formation and abnormal bone marrow in rats. Exp. Biol. Med., 2012, 237: 1101-1109.
CrossRef Google scholar
[36.]
Swanson CM, et al.. Bone turnover markers after sleep restriction and circadian disruption: a mechanism for sleep-related bone loss in humans. J. Clin. Endocrinol. Metab., 2017, 102: 3722-3730.
CrossRef Google scholar
[37.]
Gafni Y, et al.. Circadian rhythm of osteocalcin in the maxillomandibular complex. J. Dent. Res., 2009, 88: 45-50.
CrossRef Google scholar
[38.]
Juliana N, et al.. Effect of circadian rhythm disturbance on the human musculoskeletal system and the importance of nutritional strategies. Nutrients, 2023, 15: 734.
CrossRef Google scholar
[39.]
Witt-Enderby PA, et al.. Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice. J. Pineal Res., 2012, 53: 374-384.
CrossRef Google scholar
[40.]
Xu C, et al.. Circadian clock regulates bone resorption in mice. J. Bone Miner. Res., 2016, 31: 1344-1355.
CrossRef Google scholar
[41.]
Gertz BJ, Clemens JD, Holland SD, Yuan W, Greenspan S. Application of a new serum assay for type I collagen cross-linked N-telopeptides: assessment of diurnal changes in bone turnover with and without alendronate treatment. Calcif. Tissue Int., 1998, 63: 102-106.
CrossRef Google scholar
[42.]
Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone, 2002, 31: 57-61.
CrossRef Google scholar
[43.]
Samsa WE, Vasanji A, Midura RJ, Kondratov RV. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype. Bone, 2016, 84: 194-203.
CrossRef Google scholar
[44.]
Hirai S, et al.. Micro-CT observation of in vivo temporal change in mandibular condyle morphology in BMAL1 knockout mice. J. Oral. Sci., 2018, 60: 473-478.
CrossRef Google scholar
[45.]
Hand LE, Dickson SH, Freemont AJ, Ray DW, Gibbs JE. The circadian regulator Bmal1 in joint mesenchymal cells regulates both joint development and inflammatory arthritis. Arthritis Res. Ther., 2019, 21: 5.
CrossRef Google scholar
[46.]
Min H-Y, Kim K-M, Wee G, Kim E-J, Jang W-G. Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells. Life Sci., 2016, 162: 41-46.
CrossRef Google scholar
[47.]
Snelling SJB, Forster A, Mukherjee S, Price AJ, Poulsen RC. The chondrocyte-intrinsic circadian clock is disrupted in human osteoarthritis. Chronobiol. Int., 2016, 33: 574-579.
CrossRef Google scholar
[48.]
Tang Z, et al.. Inhibition of CRY2 by STAT3/miRNA-7-5p promotes osteoblast differentiation through upregulation of CLOCK/BMAL1/P300 Expression. Mol. Ther. Nucleic Acids, 2020, 19: 865-876.
CrossRef Google scholar
[49.]
Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell, 2005, 122: 803-815.
CrossRef Google scholar
[50.]
Zhuo H, Wang Y, Zhao Q. The Interaction between Bmal1 and Per2 in mouse BMSC osteogenic differentiation. Stem Cells Int., 2018, 2018: 3407821.
CrossRef Google scholar
[51.]
Ko FC, et al.. Colon epithelial cell-specific Bmal1 deletion impairs bone formation in mice. Bone, 2023, 168. 116650
CrossRef Google scholar
[52.]
Zheng J, et al.. Bmal1- and Per2-mediated regulation of the osteogenic differentiation and proliferation of mouse bone marrow mesenchymal stem cells by modulating the Wnt/β-catenin pathway. Mol. Biol. Rep., 2022, 49: 4485-4501.
CrossRef Google scholar
[53.]
Qian Z, et al.. Postnatal conditional deletion of Bmal1 in osteoblasts enhances trabecular bone formation via increased BMP2 signals. J. Bone Miner. Res., 2020, 35: 1481-1493.
CrossRef Google scholar
[54.]
Chen G, et al.. Circadian rhythm protein Bmal1 modulates cartilage gene expression in temporomandibular joint osteoarthritis via the MAPK/ERK pathway. Front. Pharmacol., 2020, 11: 527744.
CrossRef Google scholar
[55.]
Yu S, et al.. Circadian BMAL1 regulates mandibular condyle development by hedgehog pathway. Cell Prolif., 2020, 53. e12727
CrossRef Google scholar
[56.]
Wu M, Chen G, Li Y-P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res., 2016, 4: 16009.
CrossRef Google scholar
[57.]
Arya PN, Saranya I, Selvamurugan N. Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiation. World J. Stem Cells, 2024, 16: 102-113.
CrossRef Google scholar
[58.]
Tsutsumi N, et al.. Structure of the Wnt-Frizzled-LRP6 initiation complex reveals the basis for coreceptor discrimination. Proc. Natl. Acad. Sci. USA, 2023, 120. e2218238120
CrossRef Google scholar
[59.]
Feng J, et al.. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif., 2024, 57: e13600.
CrossRef Google scholar
[60.]
Holzem M, Boutros M, Holstein TW. The origin and evolution of Wnt signalling. Nat. Rev. Genet, 2024, 25: 500-512.
CrossRef Google scholar
[61.]
Bhagtaney L, Dharmarajan A, Warrier S. miRNA on the battlefield of cancer: significance in cancer stem cells, WNT pathway, and treatment. Cancers, 2024, 16: 957.
CrossRef Google scholar
[62.]
Liu J, et al.. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther., 2022, 7: 3.
CrossRef Google scholar
[63.]
Li X, et al.. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem., 2005, 280: 19883-19887.
CrossRef Google scholar
[64.]
Bouaziz W, et al.. Loss of sclerostin promotes osteoarthritis in mice via β-catenin-dependent and -independent Wnt pathways. Arthritis Res. Ther., 2015, 17: 24.
CrossRef Google scholar
[65.]
Lin F, Chen Y, Li X, Zhao Q, Tan Z. Over-expression of circadian clock gene Bmal1 affects proliferation and the canonical Wnt pathway in NIH-3T3 cells. Cell Biochem. Funct., 2013, 31: 166-172.
CrossRef Google scholar
[66.]
He Y, Chen Y, Zhao Q, Tan Z. Roles of brain and muscle ARNT-like 1 and Wnt antagonist Dkk1 during osteogenesis of bone marrow stromal cells. Cell Prolif., 2013, 46: 644-653.
CrossRef Google scholar
[67.]
Sethi JK, Vidal-Puig A. Wnt signalling and the control of cellular metabolism. Biochem. J., 2010, 427: 1-17.
CrossRef Google scholar
[68.]
He Y, et al.. Overexpression of the circadian clock gene Rev-erbα affects murine bone mesenchymal stem cell proliferation and osteogenesis. Stem Cells Dev., 2015, 24: 1194-1204.
CrossRef Google scholar
[69.]
Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone-Corsi P. Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS One, 2010, 5: e8561.
CrossRef Google scholar
[70.]
Li X, et al.. Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 cooperates with glycogen synthase kinase-3β to regulate osteogenesis of bone-marrow mesenchymal stem cells in type 2 diabetes. Mol. Cell. Endocrinol., 2017, 440: 93-105.
CrossRef Google scholar
[71.]
Breit A, et al.. Insulin-like growth factor-1 acts as a zeitgeber on hypothalamic circadian clock gene expression via glycogen synthase kinase-3β signaling. J. Biol. Chem., 2018, 293: 17278-17290.
CrossRef Google scholar
[72.]
Zhang D, et al.. Liver clock protein BMAL1 promotes de Novo Lipogenesis through Insulin-mTORC2-AKT Signaling*. J. Biol. Chem., 2014, 289: 25925-25935.
CrossRef Google scholar
[73.]
Song X, et al.. Chronic circadian rhythm disturbance accelerates knee cartilage degeneration in rats accompanied by the activation of the canonical Wnt/β-Catenin signaling pathway. Front. Pharmacol., 2021, 12: 760988.
CrossRef Google scholar
[74.]
Guillaumond F, Dardente H, Giguère V, Cermakian N. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J. Biol. Rhythms, 2005, 20: 391-403.
CrossRef Google scholar
[75.]
Miyamoto S, et al.. Role of retinoic acid-related orphan receptor-alpha in differentiation of human mesenchymal stem cells along with osteoblastic lineage. Pathobiol. J. Immunopathol. Mol. Cell. Biol., 2010, 77: 28-37.
CrossRef Google scholar
[76.]
Wu M, Wu S, Chen W, Li Y-P. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res., 2024, 34: 101-123.
CrossRef Google scholar
[77.]
Ning J, Zhao Y, Ye Y, Yu J. Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression. EBioMedicine, 2019, 41: 702-710.
CrossRef Google scholar
[78.]
Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J. Bone Miner. Res., 2004, 19: 463-470.
CrossRef Google scholar
[79.]
Mahajan A, Nengroo MA, Datta D, Katti DS. Converse modulation of Wnt/β-catenin signaling during expansion and differentiation phases of Infrapatellar fat pad-derived MSCs for improved engineering of hyaline cartilage. Biomaterials, 2023, 302: 122296.
CrossRef Google scholar
[80.]
McCarthy TL, Centrella M. Novel links among Wnt and TGF-beta signaling and Runx2. Mol. Endocrinol., 2010, 24: 587-597.
CrossRef Google scholar
[81.]
Nam D, et al.. The adipocyte clock controls brown adipogenesis through the TGF-β and BMP signaling pathways. J. Cell Sci., 2015, 128: 1835-1847
[82.]
Schroder EA, et al.. Intrinsic muscle clock is necessary for musculoskeletal health. J. Physiol., 2015, 593: 5387-5404.
CrossRef Google scholar
[83.]
Wu J, et al.. Disruption of the Clock Component Bmal1 in mice promotes cancer metastasis through the PAI-1-TGF-β-myoCAF-Dependent mechanism. Adv. Sci., 2023, 10. e2301505
CrossRef Google scholar
[84.]
Huang Z, et al.. Icariin promotes osteogenic differentiation of BMSCs by upregulating BMAL1 expression via BMP signaling. Mol. Med. Rep., 2020, 21: 1590-1596
[85.]
Liang Q, et al.. Disruption of the mouse Bmal1 locus promotes heterotopic ossification with aging via TGF-beta/BMP signaling. J. Bone Miner. Metab., 2022, 40: 40-55.
CrossRef Google scholar
[86.]
Park J-I. MAPK-ERK Pathway. Int. J. Mol. Sci., 2023, 24: 9666.
CrossRef Google scholar
[87.]
Wu P-K, Becker A, Park J-I. Growth inhibitory signaling of the Raf/MEK/ERK pathway. Int. J. Mol. Sci., 2020, 21: 5436.
CrossRef Google scholar
[88.]
Wen X, Jiao L, Tan H. MAPK/ERK pathway as a central regulator in vertebrate organ regeneration. Int. J. Mol. Sci., 2022, 23: 1464.
CrossRef Google scholar
[89.]
Su J, et al.. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature, 2020, 577: 566-571.
CrossRef Google scholar
[90.]
Lee JH, Massagué J. TGF-β in developmental and fibrogenic EMTs. Semin. Cancer Biol., 2022, 86: 136-145.
CrossRef Google scholar
[91.]
Lee K-S, Hong S-H, Bae S-C. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene, 2002, 21: 7156-7163.
CrossRef Google scholar
[92.]
Arrieta VA, et al.. ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. Nat. Cancer, 2021, 2: 1372-1386.
CrossRef Google scholar
[93.]
Yu Y, et al.. A stress-induced miR-31-CLOCK-ERK pathway is a key driver and therapeutic target for skin aging. Nat. Aging, 2021, 1: 795-809.
CrossRef Google scholar
[94.]
Qian Z, et al.. Blocking circadian clock factor Rev-erbα inhibits growth plate chondrogenesis via up-regulating MAPK-ERK1/2 pathway. Cell Cycle Georget. Tex., 2023, 22: 73-84.
CrossRef Google scholar
[95.]
Liu Z, et al.. Circadian control of ConA-induced acute liver injury and inflammatory response via Bmal1 regulation of Junb. JHEP Rep. Innov. Hepatol., 2023, 5: 100856.
CrossRef Google scholar
[96.]
Sanada K, Okano T, Fukada Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J. Biol. Chem., 2002, 277: 267-271.
CrossRef Google scholar
[97.]
Goldsmith CS, Bell-Pedersen D. Diverse roles for MAPK signaling in circadian clocks. Adv. Genet., 2013, 84: 1-39.
CrossRef Google scholar
[98.]
Rohani MG, Pilcher BK, Chen P, Parks WC. Cdc42 inhibits ERK-mediated collagenase-1 (MMP-1) expression in collagen-activated human keratinocytes. J. Investig. Dermatol., 2014, 134: 1230-1237.
CrossRef Google scholar
[99.]
Wang Y-L, et al.. Matrix metalloproteinase and its inhibitor in temporomandibular joint osteoarthrosis after indirect trauma in young goats. Br. J. Oral. Maxillofac. Surg., 2008, 46: 192-197.
CrossRef Google scholar
[100.]
Ahmad N, Chen S, Wang W, Kapila S. 17β-estradiol Induces MMP-9 and MMP-13 in TMJ Fibrochondrocytes via Estrogen Receptor α. J. Dent. Res., 2018, 97: 1023-1030.
CrossRef Google scholar
[101.]
Ma C, et al.. Effects of chronic sleep deprivation on the extracellular signal-regulated kinase pathway in the temporomandibular joint of rats. PLoS One, 2014, 9: e107544.
CrossRef Google scholar
[102.]
Zinatizadeh MR, et al.. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis., 2021, 8: 287-297.
CrossRef Google scholar
[103.]
Guldenpfennig C, Teixeiro E, Daniels M. NF-kB’s contribution to B cell fate decisions. Front. Immunol., 2023, 14: 1214095.
CrossRef Google scholar
[104.]
Sun S-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol., 2017, 17: 545-558.
CrossRef Google scholar
[105.]
Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell, 2008, 132: 344-362.
CrossRef Google scholar
[106.]
Israël A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb. Perspect. Biol., 2010, 2: a000158.
CrossRef Google scholar
[107.]
Sun SC, Ganchi PA, Ballard DW, Greene WC. NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science, 1993, 259: 1912-1915.
CrossRef Google scholar
[108.]
Zhang Q, Lenardo MJ, Baltimore D. 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell, 2017, 168: 37-57.
CrossRef Google scholar
[109.]
Wertz IE, Dixit VM. Signaling to NF-kappaB: regulation by ubiquitination. Cold Spring Harb. Perspect. Biol., 2010, 2: a003350.
CrossRef Google scholar
[110.]
Wang S, et al.. An NF-κB-driven lncRNA orchestrates colitis and circadian clock. Sci. Adv., 2020, 6: eabb5202.
CrossRef Google scholar
[111.]
Hong H-K, et al.. Requirement for NF-κB in maintenance of molecular and behavioral circadian rhythms in mice. Genes Dev., 2018, 32: 1367-1379.
CrossRef Google scholar
[112.]
Shen Y, et al.. NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1. PLoS Genet., 2021, 17. e1009933
CrossRef Google scholar
[113.]
Wang J, et al.. Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression. Cancer Cell Int., 2019, 19. 182
CrossRef Google scholar
[114.]
Li X, et al.. BMAL1 regulates balance of osteogenic-osteoclastic function of bone marrow mesenchymal stem cells in type 2 diabetes mellitus through the NF-κB pathway. Mol. Biol. Rep., 2018, 45: 1691-1704.
CrossRef Google scholar
[115.]
Alhilali M, et al.. IL-1β induces changes in expression of core circadian clock components PER2 and BMAL1 in primary human chondrocytes through the NMDA receptor/CREB and NF-κB signalling pathways. Cell. Signal., 2021, 87: 110143.
CrossRef Google scholar
[116.]
Petrov K, Wierbowski BM, Salic A. Sending and receiving hedgehog signals. Annu. Rev. Cell Dev. Biol., 2017, 33: 145-168.
CrossRef Google scholar
[117.]
Kuwahara ST, Liu S, Chareunsouk A, Serowoky M, Mariani FV. On the horizon: Hedgehog signaling to heal broken bones. Bone Res., 2022, 10: 13.
CrossRef Google scholar
[118.]
Jiang Y, et al.. Defining a critical period in calvarial development for Hedgehog pathway antagonist-induced frontal bone dysplasia in mice. Int. J. Oral. Sci., 2019, 11: 3.
CrossRef Google scholar
[119.]
Thomas S, Jaganathan BG. Signaling network regulating osteogenesis in mesenchymal stem cells. J. Cell Commun. Signal., 2022, 16: 47-61.
CrossRef Google scholar
[120.]
Zhao M, et al.. The zinc finger transcription factor Gli2 mediates bone morphogenetic protein 2 expression in osteoblasts in response to hedgehog signaling. Mol. Cell. Biol., 2006, 26: 6197-6208.
CrossRef Google scholar
[121.]
Long F, et al.. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development, 2004, 131: 1309-1318.
CrossRef Google scholar
[122.]
Alman BA. The role of hedgehog signalling in skeletal health and disease. Nat. Rev. Rheumatol., 2015, 11: 552-560.
CrossRef Google scholar
[123.]
Rockel JS, et al.. Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis. J. Clin. Investig., 2016, 126: 1649-1663.
CrossRef Google scholar
[124.]
Lu W, et al.. Hedgehog signaling regulates bone homeostasis through orchestrating osteoclast differentiation and osteoclast-osteoblast coupling. Cell. Mol. Life Sci., 2023, 80: 171.
CrossRef Google scholar
[125.]
Tao D, et al.. Primary cilia support cartilage regeneration after injury. Int. J. Oral. Sci., 2023, 15: 22.
CrossRef Google scholar
[126.]
Zhou H, et al.. Research progress on the hedgehog signalling pathway in regulating bone formation and homeostasis. Cell Prolif., 2022, 55. e13162
CrossRef Google scholar
[127.]
Zhang J, et al.. Postnatal deletion of Bmal1 in mice protects against obstructive renal fibrosis via suppressing Gli2 transcription. FASEB J., 2021, 35 e21530
[128.]
Zhang H, et al.. Maintaining hypoxia environment of subchondral bone alleviates osteoarthritis progression. Sci. Adv., 2023, 9: eabo7868.
CrossRef Google scholar
[129.]
Pfander D, Swoboda B, Cramer T. The role of HIF-1alpha in maintaining cartilage homeostasis and during the pathogenesis of osteoarthritis. Arthritis Res. Ther., 2006, 8: 104.
CrossRef Google scholar
[130.]
Hollander AP, Dickinson SC, Kafienah W. Stem cells and cartilage development: complexities of a simple tissue. Stem Cells Dayt. Ohio, 2010, 28: 1992-1996.
CrossRef Google scholar
[131.]
Schipani E, et al.. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev., 2001, 15: 2865-2876.
CrossRef Google scholar
[132.]
Peek CB, et al.. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab., 2017, 25: 86-92.
CrossRef Google scholar
[133.]
Sabatini PV, Lynn FC. All-encomPASsing regulation of β-cells: PAS domain proteins in β-cell dysfunction and diabetes. Trends Endocrinol. Metab., 2015, 26: 49-57.
CrossRef Google scholar
[134.]
Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA, 1998, 95: 5474-5479.
CrossRef Google scholar
[135.]
Suyama K, et al.. Circadian factors BMAL1 and RORα control HIF-1α transcriptional activity in nucleus pulposus cells: implications in maintenance of intervertebral disc health. Oncotarget, 2016, 7: 23056-23071.
CrossRef Google scholar
[136.]
Palazon A, et al.. An HIF-1α/VEGF-A Axis in Cytotoxic T cells regulates tumor progression. Cancer Cell, 2017, 32: 669-683.e5.
CrossRef Google scholar
[137.]
Li Y, et al.. Succinate induces synovial angiogenesis in rheumatoid arthritis through metabolic remodeling and HIF-1α/VEGF axis. Free Radic. Biol. Med., 2018, 126: 1-14.
CrossRef Google scholar
[138.]
Shao J, et al.. A dual role of HIF1α in regulating osteogenesis-angiogenesis coupling. Stem Cell Res. Ther., 2022, 13: 59.
CrossRef Google scholar
[139.]
Schipani E, Maes C, Carmeliet G, Semenza GL. Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J. Bone Miner. Res., 2009, 24: 1347-1353.
CrossRef Google scholar
[140.]
Ma Z, et al.. Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway. Cell Cycle Georget. Tex., 2019, 18: 1473-1489.
CrossRef Google scholar
[141.]
Jin X, et al.. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell, 1999, 96: 57-68.
CrossRef Google scholar
[142.]
Cho H, et al.. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature, 2012, 485: 123-127.
CrossRef Google scholar
[143.]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16: 203-222.
CrossRef Google scholar
[144.]
Mei L, et al.. Hsa-let-7f-1-3p targeting the circadian gene Bmal1 mediates intervertebral disc degeneration by regulating autophagy. Pharmacol. Res., 2022, 186: 106537.
CrossRef Google scholar
[145.]
Zhang L, et al.. miR-155-5p/Bmal1 modulates the senescence and osteogenic differentiation of mouse BMSCs through the Hippo signaling pathway. Stem Cell Rev. Rep., 2024, 20: 554-567.
CrossRef Google scholar
[146.]
Cha S, et al.. Clock-modified mesenchymal stromal cells therapy rescues molecular circadian oscillation and age-related bone loss via miR142-3p/Bmal1/YAP signaling axis. Cell Death Discov., 2022, 8: 111.
CrossRef Google scholar
[147.]
Tan X, et al.. Clock-controlled mir-142-3p can target its activator, Bmal1. BMC Mol. Biol., 2012, 13. 27
CrossRef Google scholar
[148.]
Bu Y, et al.. A PERK-miR-211 axis suppresses circadian regulators and protein synthesis to promote cancer cell survival. Nat. Cell Biol., 2018, 20: 104-115.
CrossRef Google scholar
[149.]
Lou J, Wang Y, Zhang Z, Qiu W. Activation of MMPs in macrophages by mycobacterium tuberculosis via the miR-223-BMAL1 signaling pathway. J. Cell. Biochem., 2017, 118: 4804-4812.
CrossRef Google scholar
[150.]
Zhang W, et al.. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. FASEB J., 2016, 30: 2151-2160.
CrossRef Google scholar
[151.]
Jockers R, et al.. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol., 2016, 173: 2702-2725.
CrossRef Google scholar
[152.]
Vasey C, McBride J, Penta K. Circadian rhythm dysregulation and restoration: the role of melatonin. Nutrients, 2021, 13: 3480.
CrossRef Google scholar
[153.]
Amstrup AK, Sikjaer T, Mosekilde L, Rejnmark L. Melatonin and the skeleton. Osteoporos. Int., 2013, 24: 2919-2927.
CrossRef Google scholar
[154.]
Fu, S. et al. Circadian production of melatonin in cartilage modifies rhythmic gene expression. J. Endocrinol. 241, 161–173 (2019).
[155.]
Wang X, Jiang W, Pan K, Tao L, Zhu Y. Melatonin induces RAW264.7 cell apoptosis via the BMAL1/ROS/MAPK-p38 pathway to improve postmenopausal osteoporosis. Bone Jt. Res., 2023, 12: 677-690.
CrossRef Google scholar
[156.]
Yu S, et al.. Circadian rhythm modulates endochondral bone formation via MTR1/AMPKβ1/BMAL1 signaling axis. Cell Death Differ., 2022, 29: 874-887.
CrossRef Google scholar
[157.]
Meng H, et al.. Sodium fluoride induces apoptosis through the downregulation of hypoxia-inducible factor-1α in primary cultured rat chondrocytes. Int. J. Mol. Med., 2014, 33: 351-358.
CrossRef Google scholar
[158.]
Ma R, et al.. Fluoride inhibits longitudinal bone growth by acting directly at the growth plate in cultured neonatal rat metatarsal bones. Biol. Trace Elem. Res., 2020, 197: 522-532.
CrossRef Google scholar
[159.]
Li D, Zhang R, Sun Q, Guo X. Involvement of Bmal1 and circadian clock signaling in chondrogenic differentiation of ATDC5 cells by fluoride. Ecotoxicol. Environ. Saf., 2020, 204: 111058.
CrossRef Google scholar
[160.]
Chang H-C, Guarente L. SIRT1 and other sirtuins in Metabolism. Trends Endocrinol. Metab., 2014, 25: 138-145.
CrossRef Google scholar
[161.]
Nakahata Y, et al.. The NAD+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control. Cell, 2008, 134: 329-340.
CrossRef Google scholar
[162.]
Chang H-C, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell, 2013, 153: 1448-1460.
CrossRef Google scholar
[163.]
Liu Z, et al.. The ERα/KDM6B regulatory axis modulates osteogenic differentiation in human mesenchymal stem cells. Bone Res., 2022, 10: 3.
CrossRef Google scholar
[164.]
Chen L, et al.. Dual-targeted nanodiscs revealing the cross-talk between osteogenic differentiation of mesenchymal stem cells and macrophages. ACS Nano, 2023, 17: 3153-3167.
CrossRef Google scholar
[165.]
Xie Y, et al.. Orthodontic Force-Induced BMAL1 in PDLCs is a vital osteoclastic activator. J. Dent. Res., 2022, 101: 177-186.
CrossRef Google scholar
[166.]
Burridge K, Monaghan-Benson E, Graham DM. Mechanotransduction: from the cell surface to the nucleus via RhoA. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2019, 374: 20180229.
CrossRef Google scholar
[167.]
Wang D, et al.. Restoring the dampened expression of the core clock molecule BMAL1 protects against compression-induced intervertebral disc degeneration. Bone Res., 2022, 10: 20.
CrossRef Google scholar
[168.]
Balani DH, Ono N, Kronenberg HM. Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J. Clin. Investig., 2017, 127: 3327-3338.
CrossRef Google scholar
[169.]
Guan Z, et al.. Bone mass loss in chronic heart failure is associated with sympathetic nerve activation. Bone, 2023, 166. 116596
CrossRef Google scholar
[170.]
Huang J, et al.. β-Receptor blocker enhances the anabolic effect of PTH after osteoporotic fracture. Bone Res., 2024, 12: 18.
CrossRef Google scholar
[171.]
Sun H, et al.. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact. Mater., 2023, 24: 477-496
[172.]
Zhou X, et al.. BMAL1 deficiency promotes skeletal mandibular hypoplasia via OPG downregulation. Cell Prolif., 2018, 51. e12470
CrossRef Google scholar
[173.]
Koshi R, et al.. Morphological characteristics of interalveolar septum and mandible in BMAL1 gene knockout mice. J. Oral. Sci., 2020, 63: 83-86.
CrossRef Google scholar
[174.]
Takarada T, et al.. Bone resorption is regulated by circadian clock in osteoblasts. J. Bone Miner. Res., 2017, 32: 872-881.
CrossRef Google scholar
[175.]
Yang W, et al.. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature, 2013, 499: 491-495.
CrossRef Google scholar
[176.]
Han Y, et al.. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J. Clin. Investig., 2019, 129: 1895-1909.
CrossRef Google scholar
[177.]
Dudek M, et al.. The clock transcription factor BMAL1 is a key regulator of extracellular matrix homeostasis and cell fate in the intervertebral disc. Matrix Biol., 2023, 122: 1-9.
CrossRef Google scholar
[178.]
Qian Z, Gao X, Jin X, Kang X, Wu S. Cartilage-specific deficiency of clock gene Bmal1 accelerated articular cartilage degeneration in osteoarthritis by up-regulation of mTORC1 signaling. Int. Immunopharmacol., 2023, 115: 109692.
CrossRef Google scholar
[179.]
Kawai M, et al.. Intestinal clock system regulates skeletal homeostasis. JCI Insight, 2019, 4: e121798.
CrossRef Google scholar
[180.]
Huo M, et al.. Loss of myeloid Bmal1 exacerbates hypertensive vascular remodelling through interaction with STAT6 in mice. Cardiovasc. Res., 2022, 118: 2859-2874.
CrossRef Google scholar
[181.]
Hong H, et al.. REV-ERBα agonist SR9009 suppresses IL-1β production in macrophages through BMAL1-dependent inhibition of inflammasome. Biochem. Pharmacol., 2021, 192: 114701.
CrossRef Google scholar
[182.]
Koronowski KB, et al.. Defining the independence of the liver circadian clock. Cell, 2019, 177: 1448-1462.e14.
CrossRef Google scholar
[183.]
Early JO, et al.. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc. Natl. Acad. Sci. USA, 2018, 115: E8460-E8468.
CrossRef Google scholar
[184.]
Jing D, et al.. Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats. Bone, 2010, 46: 487-495.
CrossRef Google scholar
[185.]
Akagi R, et al.. Dysregulated circadian rhythm pathway in human osteoarthritis: NR1D1 and BMAL1 suppression alters TGF-β signaling in chondrocytes. Osteoarthr. Cartil., 2017, 25: 943-951.
CrossRef Google scholar
[186.]
Jinteng L, et al.. BMAL1-TTK-H2Bub1 loop deficiency contributes to impaired BM-MSC-mediated bone formation in senile osteoporosis. Mol. Ther. Nucleic Acids, 2023, 31: 568-585.
CrossRef Google scholar
Funding
National Natural Science Foundation of China (National Science Foundation of China)(82171003); Research and Develop Program of West China Hospital of Stomatology Sichuan University (NO. LCYJ-2022-YY-1),

Accesses

Citations

Detail

Sections
Recommended

/