FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia

Anne Morice , Amélie de La Seiglière , Alexia Kany , Roman H. Khonsari , Morad Bensidhoum , Maria-Emilia Puig-Lombardi , Laurence Legeai Mallet

Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 12

PDF
Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 12 DOI: 10.1038/s41413-024-00385-x
Article

FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia

Author information +
History +
PDF

Abstract

Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch). Bone mineralization of the calluses was abnormally high in Crz mice and abnormally low in Hch mice. The latter model presented pseudarthrosis and impaired chondrocyte differentiation. Spatial transcriptomic analyses of the Hch callus revealed abnormally low expression of Col11, Col1a, Dmp1 genes in mature chondrocytes. We found that the expression of genes involved in autophagy and apoptosis (Smad1, Comp, Birc2) was significantly perturbed and that the Dusp3, Dusp9, and Socs3 genes controlling the mitogen-activated protein kinase pathway were overexpressed. Lastly, we found that treatment with a tyrosine kinase inhibitor (BGJ398, infigratinib) or a C-type natriuretic peptide (BMN111, vosoritide) fully rescued the defective endochondral bone repair observed in Hch mice. Taken as a whole, our findings show that FGFR3 is a critical orchestrator of bone repair and provide a rationale for the development of potential treatments for patients with FGFR3-osteochondrodysplasia.

Cite this article

Download citation ▾
Anne Morice, Amélie de La Seiglière, Alexia Kany, Roman H. Khonsari, Morad Bensidhoum, Maria-Emilia Puig-Lombardi, Laurence Legeai Mallet. FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia. Bone Research, 2025, 13(1): 12 DOI:10.1038/s41413-024-00385-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway WIREs Dev. Biol., 2015, 4: 215-266.

[2]

Delezoide AL, et al.. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification Mech. Dev., 1998, 77: 19-30.

[3]

Eswarakumar VP, Horowitz MC, Locklin R, Morriss-Kay GM, Lonai P. A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis Proc. Natl. Acad. Sci., 2004, 101: 12555-12560.

[4]

Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease Genes Dev., 2002, 16: 1446-1465.

[5]

Rice DPC, Rice R, Thesleff I. Fgfr mRNA isoforms in craniofacial bone development Bone, 2003, 33: 14-27.

[6]

Havens BA, et al.. Roles of FGFR3 during morphogenesis of Meckel’s cartilage and mandibular bones Dev. Biol., 2008, 316: 336-349.

[7]

Matsushita T, et al.. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway Hum. Mol. Genet., 2009, 18: 227-240.

[8]

Di Rocco F, et al.. FGFR3 mutation causes abnormal membranous ossification in achondroplasia Hum. Mol. Genet., 2014, 23: 2914-2925.

[9]

Teven CM, Farina EM, Rivas J, Reid RR. Fibroblast growth factor (FGF) signaling in development and skeletal diseases Genes Dis., 2014, 1: 199-213.

[10]

Biosse Duplan, M. et al. Meckel’s and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible. Hum. Mol. Genet. 25, 2997–3010 (2016).

[11]

Yu K, Karuppaiah K, Ornitz DM. Mesenchymal fibroblast growth factor receptor signaling regulates palatal shelf elevation during secondary palate formation Dev. Dyn., 2015, 244: 1427-1438.

[12]

Cornille M, et al.. FGFR3 overactivation in the brain is responsible for memory impairments in Crouzon syndrome mouse model J. Exp. Med., 2022, 219 e20201879

[13]

Wei X, Hu M, Mishina Y, Liu F. Developmental regulation of the growth plate and cranial synchondrosis J. Dent. Res., 2016, 95: 1221-1229.

[14]

Brăescu R, et al.. Pointing on the early stages of maxillary bone and tooth development - histological findings Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol., 2020, 61: 167-174.

[15]

Galea GL, Zein MR, Allen S, Francis‐West P. Making and shaping endochondral and intramembranous bones Dev. Dyn., 2021, 250: 414-449.

[16]

Svandova E, Peterkova R, Matalova E, Lesot H. Formation and developmental specification of the odontogenic and osteogenic mesenchymes Front. Cell Dev. Biol., 2020, 8: 640.

[17]

Morice A, et al.. Early mandibular morphological differences in patients with FGFR2 and FGFR3-related syndromic craniosynostoses: A 3D comparative study Bone, 2020, 141. 115600

[18]

Lattanzi W, Barba M, Di Pietro L, Boyadjiev SA. Genetic advances in craniosynostosis Am. J. Med. Genet. A., 2017, 173: 1406-1429.

[19]

Shiller JG. Craniofacial dysostosis of Crouzon: a case report and pedigree with emphasis on heredity Pediatrics, 1959, 23: 107-112. 1))

[20]

Rousseau F, et al.. Clinical and genetic heterogeneity of hypochondroplasia J. Med. Genet., 1996, 33: 749-752.

[21]

Flynn MA, Pauli RM. Double heterozygosity in bone growth disorders: Four new observations and review Am. J. Med. Genet. A., 2003, 121A: 193-208.

[22]

Walker BA. Hypochondroplasia Arch. Pediatr. Adolesc. Med., 1971, 122: 95.

[23]

Maroteaux P, Falzon P. [Hypochondroplasia. Review of 80 cases] Arch. Fr. Pediatr., 1988, 45: 105-109

[24]

Motch Perrine, S. M. et al. Embryonic cranial cartilage defects in the Fgfr3 Y367C /+ mouse model of achondroplasia. Anat. Rec. ar.25327 (2023).

[25]

Perrine SMM, et al.. Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice Dis. Model. Mech., 2019, 12: dmm038513.

[26]

Loisay L, et al.. Hypochondroplasia gain-of-function mutation in FGFR3 causes defective bone mineralization in mice JCI Insight, 2023, 8. e168796

[27]

Pitirri MK, et al.. Meckel’s cartilage in mandibular development and dysmorphogenesis Front. Genet., 2022, 13: 871927.

[28]

Gambari L, Grigolo B, Grassi F. Hydrogen sulfide in bone tissue regeneration and repair: state of the art and new perspectives Int. J. Mol. Sci., 2019, 20: 5231.

[29]

Su N. FGF signaling: its role in bone development and human skeleton diseases Front. Biosci., 2008, 13: 2842.

[30]

Chen H, et al.. PTH 1-34 ameliorates the osteopenia and delayed healing of stabilized tibia fracture in mice with achondroplasia resulting from gain-of-function mutation of FGFR3 Int. J. Biol. Sci., 2017, 13: 1254-1265.

[31]

Julien A, et al.. FGFR3 in periosteal cells drives cartilage-to-bone transformation in bone repair Stem Cell Rep., 2020, 15: 955-967.

[32]

Cottin M, Khonsari RH, Friess M. Assessing cranial plasticity in humans: The impact of artificial deformation on masticatory and basicranial structures Comptes Rendus Palevol, 2017, 16: 545-556. 5-6))

[33]

Ferros I, Mora MJ, Obeso IF, Jimenez P, Martinez‐Insua A. Relationship between the cranial base and the mandible in artificially deformed skulls Orthod. Craniofac. Res., 2016, 19: 222-233.

[34]

Mugniery E, et al.. An activating Fgfr3 mutation affects trabecular bone formation via a paracrine mechanism during growth Hum. Mol. Genet., 2012, 21: 2503-2513.

[35]

Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair J. Clin. Invest., 2016, 126: 509-526.

[36]

Komatsu DE, Hadjiargyrou M. Activation of the transcription factor HIF-1 and its target genes, VEGF, HO-1, iNOS, during fracture repair Bone, 2004, 34: 680-688.

[37]

Hinton RJ, Jing Y, Jing J, Feng JQ. Roles of chondrocytes in endochondral bone formation and fracture repair J. Dent. Res., 2017, 96: 23-30.

[38]

Taniguchi N, Kawakami Y, Maruyama I, Lotz M. HMGB proteins and arthritis Hum. Cell, 2018, 31: 1-9.

[39]

Aghajanian P, Xing W, Cheng S, Mohan S. Epiphyseal bone formation occurs via thyroid hormone regulation of chondrocyte to osteoblast transdifferentiation Sci. Rep., 2017, 7. 10432

[40]

Ascenzi M-G, et al.. Effect of localization, length and orientation of chondrocytic primary cilium on murine growth plate organization J. Theor. Biol., 2011, 285: 147-155.

[41]

Haycraft CJ, et al.. Intraflagellar transport is essential for endochondral bone formation Development, 2007, 134: 307-316.

[42]

Kunova Bosakova M, et al.. Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies Hum. Mol. Genet., 2018, 27: 1093-1105.

[43]

Martin L, et al.. Theobroma cacao improves bone growth by modulating defective ciliogenesis in a mouse model of achondroplasia Bone Res., 2022, 10: 8.

[44]

Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease Neuron, 2010, 68: 610-638.

[45]

Schliwa M, Woehlke G. Molecular motors Nature, 2003, 422: 759-765.

[46]

Funabashi T, et al.. Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46–IFT56 as well as on its nuclear localization signal Mol. Biol. Cell, 2017, 28: 624-633.

[47]

Ishida Y, Tasaki K, Katoh Y, Nakayama K. Molecular basis underlying the ciliary defects caused by IFT52 variations found in skeletal ciliopathies Mol. Biol. Cell, 2022, 33: ar83.

[48]

Bridgewater LC, Lefebvre V, de Crombrugghe B. Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer J. Biol. Chem., 1998, 273: 14998-15006.

[49]

Amarasekara DS, Kim S, Rho J. Regulation of osteoblast differentiation by cytokine networks Int. J. Mol. Sci., 2021, 22: 2851.

[50]

Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin Biochem. Biophys. Res. Commun., 2001, 280: 460-465.

[51]

Zhang Q, et al.. Dmp1 Null mice develop a unique osteoarthritis-like phenotype Int. J. Biol. Sci., 2016, 12: 1203-1212.

[52]

Morcos MW, et al.. PHOSPHO1 is essential for normal bone fracture healing: an animal study Bone Jt. Res., 2018, 7: 397-405.

[53]

Jonquoy A, et al.. A novel tyrosine kinase inhibitor restores chondrocyte differentiation and promotes bone growth in a gain-of-function Fgfr3 mouse model Hum. Mol. Genet., 2012, 21: 841-851.

[54]

Komla-Ebri D, et al.. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model J. Clin. Invest., 2016, 126: 1871-1884.

[55]

Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass Nature, 2003, 423: 349-355.

[56]

Cinque L, et al.. FGF signalling regulates bone growth through autophagy Nature, 2015, 528: 272-275.

[57]

Li H, et al.. Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss Autophagy, 2018, 14: 1726-1741.

[58]

Gagarina V, Carlberg AL, Pereira-Mouries L, Hall DJ. Cartilage oligomeric matrix protein protects cells against death by elevating members of the IAP family of survival proteins J. Biol. Chem., 2008, 283: 648-659.

[59]

Fu D, Samson LD, Hübscher U, van Loon B. The interaction between ALKBH2 DNA repair enzyme and PCNA is direct, mediated by the hydrophobic pocket of PCNA and perturbed in naturally-occurring ALKBH2 variants DNA Repair, 2015, 35: 13-18.

[60]

Jeffrey KL, Camps M, Rommel C, Mackay CR. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses Nat. Rev. Drug Discov., 2007, 6: 391-403.

[61]

Patterson KI, Brummer T, O’brien PM, Daly RJ. Dual-specificity phosphatases: critical regulators with diverse cellular targets Biochem. J., 2009, 418: 475-489.

[62]

Babon JJ, Nicola NA. The biology and mechanism of action of suppressor of cytokine signaling 3 Growth Factors, 2012, 30: 207-219.

[63]

Liu P, Verhaar AP, Peppelenbosch MP. Signaling size: ankyrin and SOCS Box-Containing ASB E3 ligases in action Trends Biochem. Sci., 2019, 44: 64-74.

[64]

Lorget F, et al.. Evaluation of the therapeutic potential of a CNP Analog in a Fgfr3 mouse model recapitulating achondroplasia Am. J. Hum. Genet., 2012, 91: 1108-1114.

[65]

Wendt DJ, et al.. Neutral endopeptidase-resistant C-Type natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3–related dwarfism J. Pharmacol. Exp. Ther., 2015, 353: 132-149.

[66]

Savarirayan R, et al.. Once-daily, subcutaneous vosoritide therapy in children with achondroplasia: a randomised, double-blind, phase 3, placebo-controlled, multicentre trial Lancet, 2020, 396: 684-692.

[67]

Savarirayan R, Hoover-Fong J, Yap P, Fredwall SO. New treatments for children with achondroplasia Lancet Child Adolesc. Health, 2024, 8: 301-310.

[68]

Ramaesh T, Bard JBL. The growth and morphogenesis of the early mouse mandible: a quantitative analysis J. Anat., 2003, 203: 213-222.

[69]

Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration J. Bone Miner. Res., 2009, 24: 274-282.

[70]

Matthews BG, et al.. Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing J. Bone Miner. Res., 2014, 29: 1283-1294.

[71]

Grcevic D, et al.. In vivo fate mapping identifies mesenchymal progenitor cells Stem Cells, 2012, 30: 187-196.

[72]

Kawashima I, et al.. Activated FGFR3 suppresses bone regeneration and bone mineralization in an ovariectomized mouse model BMC Musculoskelet. Disord., 2023, 24. 200

[73]

Hu DP, et al.. Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes Development, 2017, 144: 221-234.

[74]

Wang X, et al.. FGFR3/fibroblast growth factor receptor 3 inhibits autophagy through decreasing the ATG12–ATG5 conjugate, leading to the delay of cartilage development in achondroplasia Autophagy, 2015, 11: 1998-2013.

[75]

DiCesare PE, Mörgelin M, Carlson CS, Pasumarti S, Paulsson M. Cartilage oligomeric matrix protein: Isolation and characterization from human articular cartilage J. Orthop. Res., 1995, 13: 422-428.

[76]

Fang C, et al.. Molecular cloning, sequencing, and tissue and developmental expression of mouse cartilage oligomeric matrix protein (COMP) J. Orthop. Res., 2000, 18: 593-603.

[77]

Piróg KA, et al.. Abnormal chondrocyte apoptosis in the cartilage growth plate is influenced by genetic background and deletion of CHOP in a targeted mouse model of pseudoachondroplasia PLoS ONE, 2014, 9: e85145.

[78]

Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease Genes Dev., 2015, 29: 1463-1486.

[79]

Pfaff MJ, et al.. FGFR2c-mediated ERK–MAPK activity regulates coronal suture development Dev. Biol., 2016, 415: 242-250.

[80]

Schmid GJ, Kobayashi C, Sandell LJ, Ornitz DM. Fibroblast growth factor expression during skeletal fracture healing in mice Dev. Dyn., 2009, 238: 766-774.

[81]

Rundle CH, et al.. Expression of the fibroblast growth factor receptor genes in fracture repair Clin. Orthop., 2002, 403: 253-263.

[82]

Nakajima F, et al.. Spatial and temporal gene expression in chondrogenesis during fracture healing and the effects of basic fibroblast growth factor J. Orthop. Res., 2001, 19: 935-944.

[83]

Rohlf FJ, Chang WS, Sokal RR, Kim J. Accuracy of estimated phylogenies: effects of tree topology and evolutionary model Evolution, 1990, 44: 1671-1684.

[84]

Dryden IL, Walker G. Highly resistant regression and object matching Biometrics, 1999, 55: 820-825.

[85]

Dryden IL, Oxborrow N, Dickson R. Familial relationships of normal spine shape Stat. Med., 2008, 27: 1993-2003.

[86]

Abou‐Khalil R, et al.. Delayed bone regeneration is linked to chronic inflammation in murine muscular dystrophy J. Bone Miner. Res., 2014, 29: 304-315.

[87]

Zimmerman SM, et al.. Spatially resolved whole transcriptome profiling in human and mouse tissue using digital spatial profiling Genome Res., 2022, 32: 1892-1905

[88]

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol., 2014, 15. 550

[89]

Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples Nat. Biotechnol., 2014, 32: 896-902.

[90]

Subramanian A, et al.. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles Proc. Natl Acad. Sci., 2005, 102: 15545-15550.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

266

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/