FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia

Anne Morice, Amélie de La Seiglière, Alexia Kany, Roman H. Khonsari, Morad Bensidhoum, Maria-Emilia Puig-Lombardi, Laurence Legeai Mallet

Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 12.

Bone Research ›› 2025, Vol. 13 ›› Issue (1) : 12. DOI: 10.1038/s41413-024-00385-x
Article

FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia

Author information +
History +

Abstract

Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch). Bone mineralization of the calluses was abnormally high in Crz mice and abnormally low in Hch mice. The latter model presented pseudarthrosis and impaired chondrocyte differentiation. Spatial transcriptomic analyses of the Hch callus revealed abnormally low expression of Col11, Col1a, Dmp1 genes in mature chondrocytes. We found that the expression of genes involved in autophagy and apoptosis (Smad1, Comp, Birc2) was significantly perturbed and that the Dusp3, Dusp9, and Socs3 genes controlling the mitogen-activated protein kinase pathway were overexpressed. Lastly, we found that treatment with a tyrosine kinase inhibitor (BGJ398, infigratinib) or a C-type natriuretic peptide (BMN111, vosoritide) fully rescued the defective endochondral bone repair observed in Hch mice. Taken as a whole, our findings show that FGFR3 is a critical orchestrator of bone repair and provide a rationale for the development of potential treatments for patients with FGFR3-osteochondrodysplasia.

Cite this article

Download citation ▾
Anne Morice, Amélie de La Seiglière, Alexia Kany, Roman H. Khonsari, Morad Bensidhoum, Maria-Emilia Puig-Lombardi, Laurence Legeai Mallet. FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia. Bone Research, 2025, 13(1): 12 https://doi.org/10.1038/s41413-024-00385-x

References

[1.]
Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway WIREs Dev. Biol., 2015, 4: 215-266.
CrossRef Google scholar
[2.]
Delezoide AL, et al.. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification Mech. Dev., 1998, 77: 19-30.
CrossRef Google scholar
[3.]
Eswarakumar VP, Horowitz MC, Locklin R, Morriss-Kay GM, Lonai P. A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis Proc. Natl. Acad. Sci., 2004, 101: 12555-12560.
CrossRef Google scholar
[4.]
Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease Genes Dev., 2002, 16: 1446-1465.
CrossRef Google scholar
[5.]
Rice DPC, Rice R, Thesleff I. Fgfr mRNA isoforms in craniofacial bone development Bone, 2003, 33: 14-27.
CrossRef Google scholar
[6.]
Havens BA, et al.. Roles of FGFR3 during morphogenesis of Meckel’s cartilage and mandibular bones Dev. Biol., 2008, 316: 336-349.
CrossRef Google scholar
[7.]
Matsushita T, et al.. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway Hum. Mol. Genet., 2009, 18: 227-240.
CrossRef Google scholar
[8.]
Di Rocco F, et al.. FGFR3 mutation causes abnormal membranous ossification in achondroplasia Hum. Mol. Genet., 2014, 23: 2914-2925.
CrossRef Google scholar
[9.]
Teven CM, Farina EM, Rivas J, Reid RR. Fibroblast growth factor (FGF) signaling in development and skeletal diseases Genes Dis., 2014, 1: 199-213.
CrossRef Google scholar
[10.]
Biosse Duplan, M. et al. Meckel’s and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible. Hum. Mol. Genet. 25, 2997–3010 (2016).
[11.]
Yu K, Karuppaiah K, Ornitz DM. Mesenchymal fibroblast growth factor receptor signaling regulates palatal shelf elevation during secondary palate formation Dev. Dyn., 2015, 244: 1427-1438.
CrossRef Google scholar
[12.]
Cornille M, et al.. FGFR3 overactivation in the brain is responsible for memory impairments in Crouzon syndrome mouse model J. Exp. Med., 2022, 219 e20201879
[13.]
Wei X, Hu M, Mishina Y, Liu F. Developmental regulation of the growth plate and cranial synchondrosis J. Dent. Res., 2016, 95: 1221-1229.
CrossRef Google scholar
[14.]
Brăescu R, et al.. Pointing on the early stages of maxillary bone and tooth development - histological findings Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol., 2020, 61: 167-174.
CrossRef Google scholar
[15.]
Galea GL, Zein MR, Allen S, Francis‐West P. Making and shaping endochondral and intramembranous bones Dev. Dyn., 2021, 250: 414-449.
CrossRef Google scholar
[16.]
Svandova E, Peterkova R, Matalova E, Lesot H. Formation and developmental specification of the odontogenic and osteogenic mesenchymes Front. Cell Dev. Biol., 2020, 8: 640.
CrossRef Google scholar
[17.]
Morice A, et al.. Early mandibular morphological differences in patients with FGFR2 and FGFR3-related syndromic craniosynostoses: A 3D comparative study Bone, 2020, 141. 115600
CrossRef Google scholar
[18.]
Lattanzi W, Barba M, Di Pietro L, Boyadjiev SA. Genetic advances in craniosynostosis Am. J. Med. Genet. A., 2017, 173: 1406-1429.
CrossRef Google scholar
[19.]
Shiller JG. Craniofacial dysostosis of Crouzon: a case report and pedigree with emphasis on heredity Pediatrics, 1959, 23: 107-112. 1))
CrossRef Google scholar
[20.]
Rousseau F, et al.. Clinical and genetic heterogeneity of hypochondroplasia J. Med. Genet., 1996, 33: 749-752.
CrossRef Google scholar
[21.]
Flynn MA, Pauli RM. Double heterozygosity in bone growth disorders: Four new observations and review Am. J. Med. Genet. A., 2003, 121A: 193-208.
CrossRef Google scholar
[22.]
Walker BA. Hypochondroplasia Arch. Pediatr. Adolesc. Med., 1971, 122: 95.
CrossRef Google scholar
[23.]
Maroteaux P, Falzon P. [Hypochondroplasia. Review of 80 cases] Arch. Fr. Pediatr., 1988, 45: 105-109
[24.]
Motch Perrine, S. M. et al. Embryonic cranial cartilage defects in the Fgfr3 Y367C /+ mouse model of achondroplasia. Anat. Rec. ar.25327 (2023).
[25.]
Perrine SMM, et al.. Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice Dis. Model. Mech., 2019, 12: dmm038513.
CrossRef Google scholar
[26.]
Loisay L, et al.. Hypochondroplasia gain-of-function mutation in FGFR3 causes defective bone mineralization in mice JCI Insight, 2023, 8. e168796
CrossRef Google scholar
[27.]
Pitirri MK, et al.. Meckel’s cartilage in mandibular development and dysmorphogenesis Front. Genet., 2022, 13: 871927.
CrossRef Google scholar
[28.]
Gambari L, Grigolo B, Grassi F. Hydrogen sulfide in bone tissue regeneration and repair: state of the art and new perspectives Int. J. Mol. Sci., 2019, 20: 5231.
CrossRef Google scholar
[29.]
Su N. FGF signaling: its role in bone development and human skeleton diseases Front. Biosci., 2008, 13: 2842.
CrossRef Google scholar
[30.]
Chen H, et al.. PTH 1-34 ameliorates the osteopenia and delayed healing of stabilized tibia fracture in mice with achondroplasia resulting from gain-of-function mutation of FGFR3 Int. J. Biol. Sci., 2017, 13: 1254-1265.
CrossRef Google scholar
[31.]
Julien A, et al.. FGFR3 in periosteal cells drives cartilage-to-bone transformation in bone repair Stem Cell Rep., 2020, 15: 955-967.
CrossRef Google scholar
[32.]
Cottin M, Khonsari RH, Friess M. Assessing cranial plasticity in humans: The impact of artificial deformation on masticatory and basicranial structures Comptes Rendus Palevol, 2017, 16: 545-556. 5-6))
CrossRef Google scholar
[33.]
Ferros I, Mora MJ, Obeso IF, Jimenez P, Martinez‐Insua A. Relationship between the cranial base and the mandible in artificially deformed skulls Orthod. Craniofac. Res., 2016, 19: 222-233.
CrossRef Google scholar
[34.]
Mugniery E, et al.. An activating Fgfr3 mutation affects trabecular bone formation via a paracrine mechanism during growth Hum. Mol. Genet., 2012, 21: 2503-2513.
CrossRef Google scholar
[35.]
Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair J. Clin. Invest., 2016, 126: 509-526.
CrossRef Google scholar
[36.]
Komatsu DE, Hadjiargyrou M. Activation of the transcription factor HIF-1 and its target genes, VEGF, HO-1, iNOS, during fracture repair Bone, 2004, 34: 680-688.
CrossRef Google scholar
[37.]
Hinton RJ, Jing Y, Jing J, Feng JQ. Roles of chondrocytes in endochondral bone formation and fracture repair J. Dent. Res., 2017, 96: 23-30.
CrossRef Google scholar
[38.]
Taniguchi N, Kawakami Y, Maruyama I, Lotz M. HMGB proteins and arthritis Hum. Cell, 2018, 31: 1-9.
CrossRef Google scholar
[39.]
Aghajanian P, Xing W, Cheng S, Mohan S. Epiphyseal bone formation occurs via thyroid hormone regulation of chondrocyte to osteoblast transdifferentiation Sci. Rep., 2017, 7. 10432
CrossRef Google scholar
[40.]
Ascenzi M-G, et al.. Effect of localization, length and orientation of chondrocytic primary cilium on murine growth plate organization J. Theor. Biol., 2011, 285: 147-155.
CrossRef Google scholar
[41.]
Haycraft CJ, et al.. Intraflagellar transport is essential for endochondral bone formation Development, 2007, 134: 307-316.
CrossRef Google scholar
[42.]
Kunova Bosakova M, et al.. Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies Hum. Mol. Genet., 2018, 27: 1093-1105.
CrossRef Google scholar
[43.]
Martin L, et al.. Theobroma cacao improves bone growth by modulating defective ciliogenesis in a mouse model of achondroplasia Bone Res., 2022, 10: 8.
CrossRef Google scholar
[44.]
Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease Neuron, 2010, 68: 610-638.
CrossRef Google scholar
[45.]
Schliwa M, Woehlke G. Molecular motors Nature, 2003, 422: 759-765.
CrossRef Google scholar
[46.]
Funabashi T, et al.. Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46–IFT56 as well as on its nuclear localization signal Mol. Biol. Cell, 2017, 28: 624-633.
CrossRef Google scholar
[47.]
Ishida Y, Tasaki K, Katoh Y, Nakayama K. Molecular basis underlying the ciliary defects caused by IFT52 variations found in skeletal ciliopathies Mol. Biol. Cell, 2022, 33: ar83.
CrossRef Google scholar
[48.]
Bridgewater LC, Lefebvre V, de Crombrugghe B. Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer J. Biol. Chem., 1998, 273: 14998-15006.
CrossRef Google scholar
[49.]
Amarasekara DS, Kim S, Rho J. Regulation of osteoblast differentiation by cytokine networks Int. J. Mol. Sci., 2021, 22: 2851.
CrossRef Google scholar
[50.]
Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin Biochem. Biophys. Res. Commun., 2001, 280: 460-465.
CrossRef Google scholar
[51.]
Zhang Q, et al.. Dmp1 Null mice develop a unique osteoarthritis-like phenotype Int. J. Biol. Sci., 2016, 12: 1203-1212.
CrossRef Google scholar
[52.]
Morcos MW, et al.. PHOSPHO1 is essential for normal bone fracture healing: an animal study Bone Jt. Res., 2018, 7: 397-405.
CrossRef Google scholar
[53.]
Jonquoy A, et al.. A novel tyrosine kinase inhibitor restores chondrocyte differentiation and promotes bone growth in a gain-of-function Fgfr3 mouse model Hum. Mol. Genet., 2012, 21: 841-851.
CrossRef Google scholar
[54.]
Komla-Ebri D, et al.. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model J. Clin. Invest., 2016, 126: 1871-1884.
CrossRef Google scholar
[55.]
Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass Nature, 2003, 423: 349-355.
CrossRef Google scholar
[56.]
Cinque L, et al.. FGF signalling regulates bone growth through autophagy Nature, 2015, 528: 272-275.
CrossRef Google scholar
[57.]
Li H, et al.. Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss Autophagy, 2018, 14: 1726-1741.
CrossRef Google scholar
[58.]
Gagarina V, Carlberg AL, Pereira-Mouries L, Hall DJ. Cartilage oligomeric matrix protein protects cells against death by elevating members of the IAP family of survival proteins J. Biol. Chem., 2008, 283: 648-659.
CrossRef Google scholar
[59.]
Fu D, Samson LD, Hübscher U, van Loon B. The interaction between ALKBH2 DNA repair enzyme and PCNA is direct, mediated by the hydrophobic pocket of PCNA and perturbed in naturally-occurring ALKBH2 variants DNA Repair, 2015, 35: 13-18.
CrossRef Google scholar
[60.]
Jeffrey KL, Camps M, Rommel C, Mackay CR. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses Nat. Rev. Drug Discov., 2007, 6: 391-403.
CrossRef Google scholar
[61.]
Patterson KI, Brummer T, O’brien PM, Daly RJ. Dual-specificity phosphatases: critical regulators with diverse cellular targets Biochem. J., 2009, 418: 475-489.
CrossRef Google scholar
[62.]
Babon JJ, Nicola NA. The biology and mechanism of action of suppressor of cytokine signaling 3 Growth Factors, 2012, 30: 207-219.
CrossRef Google scholar
[63.]
Liu P, Verhaar AP, Peppelenbosch MP. Signaling size: ankyrin and SOCS Box-Containing ASB E3 ligases in action Trends Biochem. Sci., 2019, 44: 64-74.
CrossRef Google scholar
[64.]
Lorget F, et al.. Evaluation of the therapeutic potential of a CNP Analog in a Fgfr3 mouse model recapitulating achondroplasia Am. J. Hum. Genet., 2012, 91: 1108-1114.
CrossRef Google scholar
[65.]
Wendt DJ, et al.. Neutral endopeptidase-resistant C-Type natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3–related dwarfism J. Pharmacol. Exp. Ther., 2015, 353: 132-149.
CrossRef Google scholar
[66.]
Savarirayan R, et al.. Once-daily, subcutaneous vosoritide therapy in children with achondroplasia: a randomised, double-blind, phase 3, placebo-controlled, multicentre trial Lancet, 2020, 396: 684-692.
CrossRef Google scholar
[67.]
Savarirayan R, Hoover-Fong J, Yap P, Fredwall SO. New treatments for children with achondroplasia Lancet Child Adolesc. Health, 2024, 8: 301-310.
CrossRef Google scholar
[68.]
Ramaesh T, Bard JBL. The growth and morphogenesis of the early mouse mandible: a quantitative analysis J. Anat., 2003, 203: 213-222.
CrossRef Google scholar
[69.]
Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration J. Bone Miner. Res., 2009, 24: 274-282.
CrossRef Google scholar
[70.]
Matthews BG, et al.. Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing J. Bone Miner. Res., 2014, 29: 1283-1294.
CrossRef Google scholar
[71.]
Grcevic D, et al.. In vivo fate mapping identifies mesenchymal progenitor cells Stem Cells, 2012, 30: 187-196.
CrossRef Google scholar
[72.]
Kawashima I, et al.. Activated FGFR3 suppresses bone regeneration and bone mineralization in an ovariectomized mouse model BMC Musculoskelet. Disord., 2023, 24. 200
CrossRef Google scholar
[73.]
Hu DP, et al.. Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes Development, 2017, 144: 221-234.
CrossRef Google scholar
[74.]
Wang X, et al.. FGFR3/fibroblast growth factor receptor 3 inhibits autophagy through decreasing the ATG12–ATG5 conjugate, leading to the delay of cartilage development in achondroplasia Autophagy, 2015, 11: 1998-2013.
CrossRef Google scholar
[75.]
DiCesare PE, Mörgelin M, Carlson CS, Pasumarti S, Paulsson M. Cartilage oligomeric matrix protein: Isolation and characterization from human articular cartilage J. Orthop. Res., 1995, 13: 422-428.
CrossRef Google scholar
[76.]
Fang C, et al.. Molecular cloning, sequencing, and tissue and developmental expression of mouse cartilage oligomeric matrix protein (COMP) J. Orthop. Res., 2000, 18: 593-603.
CrossRef Google scholar
[77.]
Piróg KA, et al.. Abnormal chondrocyte apoptosis in the cartilage growth plate is influenced by genetic background and deletion of CHOP in a targeted mouse model of pseudoachondroplasia PLoS ONE, 2014, 9: e85145.
CrossRef Google scholar
[78.]
Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease Genes Dev., 2015, 29: 1463-1486.
CrossRef Google scholar
[79.]
Pfaff MJ, et al.. FGFR2c-mediated ERK–MAPK activity regulates coronal suture development Dev. Biol., 2016, 415: 242-250.
CrossRef Google scholar
[80.]
Schmid GJ, Kobayashi C, Sandell LJ, Ornitz DM. Fibroblast growth factor expression during skeletal fracture healing in mice Dev. Dyn., 2009, 238: 766-774.
CrossRef Google scholar
[81.]
Rundle CH, et al.. Expression of the fibroblast growth factor receptor genes in fracture repair Clin. Orthop., 2002, 403: 253-263.
CrossRef Google scholar
[82.]
Nakajima F, et al.. Spatial and temporal gene expression in chondrogenesis during fracture healing and the effects of basic fibroblast growth factor J. Orthop. Res., 2001, 19: 935-944.
CrossRef Google scholar
[83.]
Rohlf FJ, Chang WS, Sokal RR, Kim J. Accuracy of estimated phylogenies: effects of tree topology and evolutionary model Evolution, 1990, 44: 1671-1684.
CrossRef Google scholar
[84.]
Dryden IL, Walker G. Highly resistant regression and object matching Biometrics, 1999, 55: 820-825.
CrossRef Google scholar
[85.]
Dryden IL, Oxborrow N, Dickson R. Familial relationships of normal spine shape Stat. Med., 2008, 27: 1993-2003.
CrossRef Google scholar
[86.]
Abou‐Khalil R, et al.. Delayed bone regeneration is linked to chronic inflammation in murine muscular dystrophy J. Bone Miner. Res., 2014, 29: 304-315.
CrossRef Google scholar
[87.]
Zimmerman SM, et al.. Spatially resolved whole transcriptome profiling in human and mouse tissue using digital spatial profiling Genome Res., 2022, 32: 1892-1905
[88.]
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol., 2014, 15. 550
CrossRef Google scholar
[89.]
Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples Nat. Biotechnol., 2014, 32: 896-902.
CrossRef Google scholar
[90.]
Subramanian A, et al.. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles Proc. Natl Acad. Sci., 2005, 102: 15545-15550.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/