Spatial multiplexed immunofluorescence analysis reveals coordinated cellular networks associated with overall survival in metastatic osteosarcoma
Ryan A. Lacinski, Sebastian A. Dziadowicz, Vincent K. Melemai, Brody Fitzpatrick, John J. Pisquiy, Tanya Heim, Ines Lohse, Karen E. Schoedel, Nicolas J. Llosa, Kurt R. Weiss, Brock A. Lindsey
Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 55.
Spatial multiplexed immunofluorescence analysis reveals coordinated cellular networks associated with overall survival in metastatic osteosarcoma
Patients diagnosed with advanced osteosarcoma, often in the form of lung metastases, have abysmal five-year overall survival rates. The complexity of the osteosarcoma immune tumor microenvironment has been implicated in clinical trial failures of various immunotherapies. The purpose of this exploratory study was to spatially characterize the immune tumor microenvironment of metastatic osteosarcoma lung specimens. Knowledge of the coordinating cellular networks within these tissues could then lead to improved outcomes when utilizing immunotherapy for treatment of this disease. Importantly, various cell types, interactions, and cellular neighborhoods were associated with five-year survival status. Of note, increases in cellular interactions between T lymphocytes, positive for programmed cell death protein 1, and myeloid-derived suppressor cells were observed in the 5-year deceased cohort. Additionally, cellular neighborhood analysis identified an Immune-Cold Parenchyma cellular neighborhood, also associated with worse 5-year survival. Finally, the Osteosarcoma Spatial Score, which approximates effector immune activity in the immune tumor microenvironment through the spatial proximity of immune and tumor cells, was increased within 5-year survivors, suggesting improved effector signaling in this patient cohort. Ultimately, these data represent a robust spatial multiplexed immunofluorescence analysis of the metastatic osteosarcoma immune tumor microenvironment. Various communication networks, and their association with survival, were described. In the future, identification of these networks may suggest the use of specific, combinatory immunotherapeutic strategies for improved anti-tumor immune responses and outcomes in osteosarcoma.
[1.] |
|
[2.] |
|
[3.] |
Fletcher, C. D., Unni, K. K., & Mertens, F. (Eds.). (2002). Pathology and genetics of tumours of soft tissue and bone (Vol. 4). Iarc.
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
|
[31.] |
|
[32.] |
|
[33.] |
|
[34.] |
|
[35.] |
|
[36.] |
|
[37.] |
|
[38.] |
|
[39.] |
|
[40.] |
|
[41.] |
|
[42.] |
|
[43.] |
|
[44.] |
|
[45.] |
|
[46.] |
|
[47.] |
|
[48.] |
Li, Q., Huang, X. & Zhao, Y. Prediction of prognosis and immunotherapy response with a novel natural killer cell marker genes signature in osteosarcoma. Cancer Biother. Radiopharmhttps://doi.org/10.1089/cbr.2023.0103 (2023).
|
[49.] |
|
[50.] |
|
[51.] |
|
[52.] |
|
[53.] |
|
[54.] |
|
[55.] |
|
[56.] |
|
[57.] |
|
[58.] |
|
[59.] |
|
[60.] |
|
[61.] |
|
[62.] |
|
[63.] |
|
[64.] |
|
[65.] |
|
[66.] |
|
[67.] |
|
[68.] |
|
[69.] |
|
[70.] |
|
[71.] |
|
[72.] |
|
[73.] |
|
[74.] |
|
[75.] |
|
[76.] |
|
[77.] |
|
[78.] |
|
[79.] |
|
[80.] |
|
[81.] |
|
[82.] |
|
[83.] |
|
[84.] |
|
[85.] |
Barbosa, P. M., Matheus. Investigating the Role of Indoleamine 2,3-Dioxygenase 1 and Transforming Growth Factor Beta 1 in Rebound Immune Suppression Following Chemotherapy in Osteosarcoma M.S. thesis, University of Illinois at Urbana-Champaign (2023).
|
[86.] |
|
[87.] |
|
[88.] |
|
[89.] |
|
[90.] |
|
[91.] |
|
[92.] |
|
[93.] |
|
[94.] |
|
[95.] |
|
[96.] |
|
[97.] |
|
[98.] |
|
[99.] |
|
[100.] |
|
[101.] |
|
[102.] |
|
[103.] |
|
[104.] |
|
[105.] |
|
[106.] |
|
[107.] |
|
[108.] |
|
[109.] |
|
[110.] |
|
[111.] |
|
[112.] |
|
[113.] |
|
[114.] |
|
[115.] |
|
[116.] |
|
[117.] |
|
[118.] |
|
[119.] |
Kim, H. S. et al. Expression of CD44 isoforms correlates with the metastatic potential of osteosarcoma. Clin. Orthop. Relat. Res. 184–190, https://doi.org/10.1097/00003086-200203000-00028 (2002).
|
[120.] |
|
[121.] |
|
[122.] |
|
[123.] |
|
[124.] |
|
[125.] |
|
[126.] |
|
[127.] |
|
[128.] |
|
[129.] |
Casanova, J. M. et al. Tumor-infiltration lymphocytes and cancer markers in osteosarcoma: influence on patient survival. Cancers (Basel)13, 6075 (2021).
|
[130.] |
|
[131.] |
|
[132.] |
|
[133.] |
|
[134.] |
|
[135.] |
|
[136.] |
|
[137.] |
|
[138.] |
|
[139.] |
|
[140.] |
|
[141.] |
|
[142.] |
|
[143.] |
|
[144.] |
|
[145.] |
|
[146.] |
|
[147.] |
|
[148.] |
|
[149.] |
|
[150.] |
|
[151.] |
|
[152.] |
|
[153.] |
|
[154.] |
|
[155.] |
|
[156.] |
|
[157.] |
|
[158.] |
|
[159.] |
|
[160.] |
|
/
〈 |
|
〉 |