Caspase-8 promotes scramblase-mediated phosphatidylserine exposure and fusion of osteoclast precursors

Brenda Krishnacoumar , Martin Stenzel , Hilal Garibagaoglu , Yasunori Omata , Rachel L. Sworn , Thea Hofmann , Natacha Ipseiz , Magdalena A. Czubala , Ulrike Steffen , Antonio Maccataio , Cornelia Stoll , Christina Böhm , Martin Herrmann , Stefan Uderhardt , Robert H. Jenkins , Philip R. Taylor , Anika Grüneboom , Mario M. Zaiss , Georg Schett , Gerhard Krönke , Carina Scholtysek

Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 40

PDF
Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 40 DOI: 10.1038/s41413-024-00338-4
Article

Caspase-8 promotes scramblase-mediated phosphatidylserine exposure and fusion of osteoclast precursors

Author information +
History +
PDF

Abstract

Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss.

Cite this article

Download citation ▾
Brenda Krishnacoumar, Martin Stenzel, Hilal Garibagaoglu, Yasunori Omata, Rachel L. Sworn, Thea Hofmann, Natacha Ipseiz, Magdalena A. Czubala, Ulrike Steffen, Antonio Maccataio, Cornelia Stoll, Christina Böhm, Martin Herrmann, Stefan Uderhardt, Robert H. Jenkins, Philip R. Taylor, Anika Grüneboom, Mario M. Zaiss, Georg Schett, Gerhard Krönke, Carina Scholtysek. Caspase-8 promotes scramblase-mediated phosphatidylserine exposure and fusion of osteoclast precursors. Bone Research, 2024, 12(1): 40 DOI:10.1038/s41413-024-00338-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zaidi M. Skeletal remodeling in health and disease. Nat. Med., 2007, 13: 791-801

[2]

Jacome-Galarza CE, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature, 2019, 568: 541-545

[3]

Kong YY, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999, 397: 315-323

[4]

Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med., 2006, 12: 17-25

[5]

Takayanagi H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell, 2002, 3: 889-901

[6]

Witwicka H, et al. Studies of OC-STAMP in osteoclast fusion: a new knockout mouse model, rescue of cell fusion, and transmembrane topology. PLoS One, 2015, 10: e0128275

[7]

Miyamoto H, et al. Osteoclast stimulatory transmembrane protein and dendritic cell-specific transmembrane protein cooperatively modulate cell-cell fusion to form osteoclasts and foreign body giant cells. J. Bone Min. Res., 2012, 27: 1289-1297

[8]

Segawa K, Nagata S. An apoptotic ‘Eat Me’ signal: phosphatidylserine exposure. Trends Cell Biol., 2015, 25: 639-650

[9]

Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol., 2007, 7: 964-974

[10]

Wu Y, Tibrewal N, Birge RB. Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol., 2006, 16: 189-197

[11]

Nagata S, Suzuki J, Segawa K, Fujii T. Exposure of phosphatidylserine on the cell surface. Cell Death Differ., 2016, 23: 952-961

[12]

Nagata S, Sakuragi T, Segawa K. Flippase and scramblase for phosphatidylserine exposure. Curr. Opin. Immunol., 2020, 62: 31-38

[13]

Rosas M, et al. Hoxb8 conditionally immortalised macrophage lines model inflammatory monocytic cells with important similarity to dendritic cells. Eur. J. Immunol., 2011, 41: 356-365

[14]

Koizumi K, et al. Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. J. Immunol., 2009, 183: 7825-7831

[15]

Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene, 2008, 27: 6194-6206

[16]

Mukherjee A, Williams DW. More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease. Cell Death Differ., 2017, 24: 1411-1421

[17]

Günther C, et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature, 2011, 477: 335-339

[18]

Szymczyk KH, Freeman TA, Adams CS, Srinivas V, Steinbeck MJ. Active caspase-3 is required for osteoclast differentiation. J. Cell Physiol., 2006, 209: 836-844

[19]

Svandova, E., Vesela, B., Tucker, A. S. & Matalova, E. Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front. Physiol. 9, 174 (2018).

[20]

Kearney CJ, et al. Inhibitor of apoptosis proteins (IAPs) and their antagonists regulate spontaneous and tumor necrosis factor (TNF)-induced proinflammatory cytokine and chemokine production. J. Biol. Chem., 2013, 288: 4878-4890

[21]

Klöditz K, Fadeel B. Three cell deaths and a funeral: macrophage clearance of cells undergoing distinct modes of cell death. Cell Death Discov., 2019, 5

[22]

Fadok VA, Bratton DL, Henson PM. Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J. Clin. Invest., 2001, 108: 957-962

[23]

Segawa K, et al. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science, 2014, 344: 1164-1168

[24]

Kang JH, et al. Dual role of phosphatidylserine and its receptors in osteoclastogenesis. Cell Death Dis., 2020, 11

[25]

Verma SK, et al. Cell-surface phosphatidylserine regulates osteoclast precursor fusion. J. Biol. Chem., 2018, 293: 254-270

[26]

Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J. Exp. Med., 2010, 207: 1807-1817

[27]

Tsuchiya M, et al. Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nat. Commun., 2018, 9

[28]

Kim GW, Park SY, Kim IS. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a “fuse-me” signal. BMB Rep., 2016, 49: 303-304

[29]

Hochreiter-Hufford AE, Arandjelovic S, Ravichandran KS. Using phosphatidylserine exposure on apoptotic cells to stimulate myoblast fusion. Methods Mol. Biol., 2015, 1313: 141-148

[30]

Hochreiter-Hufford AE, et al. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature, 2013, 497: 263-267

Funding

Bayerische Forschungsstiftung (Bavarian Research Foundation)

RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)((BB/T009543/1)

Wellcome Trust (Wellcome)(107964/Z/15/Z)

Deutsche Forschungsgemeinschaft (German Research Foundation)(SCHE 2062/1-1)

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/