PCLAF induces bone marrow adipocyte senescence and contributes to skeletal aging

Lingqi Xie1, Yalun Cheng1, Biao Hu1, Xin Chen1, Yuze An1, Zhuying Xia1, Guangping Cai1, Changjun Li1,2,3, Hui Peng1

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 38. DOI: 10.1038/s41413-024-00337-5
ARTICLE

PCLAF induces bone marrow adipocyte senescence and contributes to skeletal aging

  • Lingqi Xie1, Yalun Cheng1, Biao Hu1, Xin Chen1, Yuze An1, Zhuying Xia1, Guangping Cai1, Changjun Li1,2,3, Hui Peng1
Author information +
History +

Abstract

Bone marrow adipocytes (BMAds) affect bone homeostasis, but the mechanism remains unclear. Here, we showed that exercise inhibited PCNA clamp-associated factor (PCLAF) secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging. The genetic deletion of PCLAF in macrophages inhibited BMAds senescence and delayed skeletal aging. In contrast, the transplantation of PCLAF-mediated senescent BMAds into the bone marrow of healthy mice suppressed bone turnover. Mechanistically, PCLAF bound to the ADGRL2 receptor to inhibit AKT/mTOR signaling that triggered BMAds senescence and subsequently spread senescence among osteogenic and osteoclastic cells. Of note, we developed a PCLAF-neutralizing antibody and showed its therapeutic effects on skeletal health in old mice. Together, these findings identify PCLAF as an inducer of BMAds senescence and provide a promising way to treat age-related osteoporosis.

Cite this article

Download citation ▾
Lingqi Xie, Yalun Cheng, Biao Hu, Xin Chen, Yuze An, Zhuying Xia, Guangping Cai, Changjun Li, Hui Peng. PCLAF induces bone marrow adipocyte senescence and contributes to skeletal aging. Bone Research, 2024, 12(0): 38 https://doi.org/10.1038/s41413-024-00337-5

References

1. Hattner, R., Epker, B. N. & Frost, H. M. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 206, 489-490 (1965).
2. Pietschmann, P.et al.Bone structure and metabolism in a rodent model of male senile osteoporosis. Exp. Gerontol. 42, 1099-1108 (2007).
3. Feng X.& McDonald, J. M. Disorders of bone remodeling. Annu. Rev. Pathol. 6, 121-145 (2011).
4. Xie, H.et al.PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20, 1270-1278 (2014).
5. Li, C. J.et al. Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab. 33, 1957-1973.e1956 (2021).
6. Namba, T.et al.Age-related changes in bone morphology, function, and cell populations in inbred C57BL/6N mice. Japanese J. Veterinary Res. 67, 313-317 (2019).
7. Fatayerji D.& Eastell, R. Age-related changes in bone turnover in men. J. Bone Miner. Res. 14, 1203-1210 (1999).
8. Aaron N., Costa S., Rosen C. J.& Qiang, L. The implications of bone marrow adipose tissue on inflammaging. Front. Endocrinol. (Lausanne) 13, 853765(2022).
9. Wang L., Zhang H., Wang S., Chen X.& Su, J. Bone marrow adipocytes: a critical player in the bone marrow microenvironment. Front. Cell Dev. Biol. 9, 770705(2021).
10. Sebo, Z. L.et al.Bone marrow adiposity: basic and clinical implications. Endocr. Rev. 40, 1187-1206 (2019).
11. Yu, B.et al. PGC-1 alpha controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ. Cell Stem Cell 23, 193-209.e5 (2018).
12. Chen, P.et al.Scara3 regulates bone marrow mesenchymal stem cell fate switch between osteoblasts and adipocytes by promoting Foxo1. Cell Prolif. 54, e13095(2021).
13. Fan, Y.et al.Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 25, 661-672 (2017).
14. Li, C. J.et al.MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J. Clin. Invest. 125, 1509-1522 (2015).
15. Yang, M.et al.Krüppel-like factor 3 inhibition by mutated lncRNA Reg1cp results in human high bone mass syndrome. J. Exp. Med. 216, 1944-1964 (2019).
16. Liu, X.et al. Oxylipin-PPARγ-initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metab. 35, 667-684.e666 (2023).
17. Tong L.& Chen, D. Senescence of bone marrow fat cells: A new clue for glucocorticoid-induced bone deterioration. Cell Metab. 35, 551-553 (2023).
18. Pagnotti, G. M.et al.Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat. Rev. Endocrinol. 15, 339-355 (2019).
19. Dolan E., Artioli G. G., Pereira R. M.R. & Gualano, B. Muscular atrophy and sarcopenia in the elderly: is there a role for creatine supplementation? Biomolecules 9, 642 (2019).
20. Bischoff-Ferrari, H. A.et al. Effect of vitamin D supplementation, omega-3 fatty acid supplementation, or a strength-training exercise program on clinical outcomes in older adults: the do-health randomized clinical trial. JAMA 324, 1855-1868 (2020).
21. Dietlein N.& Rodewald, H. R. Runner's niche: multipurpose stromal cells maintained by exercise. Trends Immunol. 42, 841-843 (2021).
22. Vico L.& Hargens, A. Skeletal changes during and after spaceflight. Nat. Rev. Rheumatol. 14, 229-245 (2018).
23. Schafer, M. J.et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes 65, 1606-1615 (2016).
24. Peng, H.et al. A mechanosensitive lipolytic factor in the bone marrow promotes osteogenesis and lymphopoiesis. Cell Metab. 34, 1168-1182.e1166 (2022).
25. Little-Letsinger, S. E. et al. Exercise to mend aged-tissue crosstalk in bone targeting osteoporosis & osteoarthritis. Semin. Cell Dev. Biol. 123, 22-35 (2022).
26. Rendina-Ruedy, E. & Rosen, C. J. Lipids in the bone marrow: an evolving perspective. Cell Metab. 31, 219-231 (2020).
27. Styner, M.et al. Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone 64, 39-46 (2014).
28. Farr, J. N.et al.Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072-1079 (2017).
29. Khosla S., Farr J. N., Tchkonia T.& Kirkland, J. L. The role of cellular senescence in ageing and endocrine disease. Nat. Rev. Endocrinol. 16, 263-275 (2020).
30. Ou M. Y., Zhang H., Tan P. C., Zhou S. B.& Li, Q. F. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis. 13, 300(2022).
31. Liu, L. J., Liao, J. M.& Zhu, F. Proliferating cell nuclear antigen clamp associated factor, a potential proto-oncogene with increased expression in malignant gastrointestinal tumors. World J. Gastrointest. Oncol. 13, 1425-1439 (2021).
32. Emanuele M. J., Ciccia A., Elia A. E.& Elledge, S. J. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate. Proc. Natl. Acad. Sci. USA. 108, 9845-9850 (2011).
33. Hosfield D. J., Mol C. D., Shen, B. & Tainer, J. A. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell 95, 135-146 (1998).
34. Suchý, T.et al.The repertoire of Adhesion G protein-coupled receptors in adipocytes and their functional relevance. Int. J. Obes. (Lond) 44, 2124-2136 (2020).
35. Tikhonova, A. N.et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222-228 (2019).
36. Ambrosi, T. H.et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597, 256-262 (2021).
37. Mitchell, C. A.et al.Stromal niche inflammation mediated by IL-1 signalling is a targetable driver of haematopoietic ageing. Nat. Cell Biol. 25, 30-41 (2023).
38. Li, J.et al.TGFβ1+ CCR5+ neutrophil subset increases in bone marrow and causes age-related osteoporosis in male mice. Nat. Commun. 14, 159(2023).
39. Li J., Chen X., Lu L.& Yu, X. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev. 52, 88-98 (2020).
40. Schaum, N.et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596-602 (2020).
41. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20-44 (2014).
42. Gillet, C.et al. Osteonecrosis of the femoral head: lipotoxicity exacerbation in msc and modifications of the bone marrow fluid. Endocrinology 158, 490-502 (2017).
43. Al Saedi, A., Goodman, C. A., Myers, D. E., Hayes, A. & Duque, G. Rapamycin affects palmitate-induced lipotoxicity in osteoblasts by modulating apoptosis and autophagy. J. Gerontol. A Biol. Sci. Med. Sci. 75, 58-63 (2020).
44. Yu, B.et al.Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-κB. Nat. Med. 20, 1009-1017 (2014).
45. Oikonomou E. K.& Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 16, 83-99 (2019).
46. Grabner G. F., Xie H., Schweiger M.& Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445-1465 (2021).
47. Chandra, A.et al.Targeted reduction of senescent cell burden alleviates focal radiotherapy-related bone loss. J. Bone Miner. Res. 35, 1119-1131 (2020).
48. Kirkland J. L.& Tchkonia, T. Senolytic drugs: from discovery to translation. J. Intern. Med. 288, 518-536 (2020).
49. Wang, L.et al.Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat. Commun. 11, 282(2020).
50. Katz, J. N., Arant, K. R. & Loeser, R. F. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA 325, 568-578 (2021).
51. Cawthorn, W. P., Scheller, E. L.& MacDougald, O. A. Adipose tissue stem cells: the great WAT hope. Trends Endocrinol. Metab. 23, 270-277 (2012).
52. Sanchez-Gurmaches, J. & Guertin, D. A. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun. 5, 4099(2014).
53. Peirce, V., Carobbio, S. & Vidal-Puig, A. The different shades of fat. Nature 510, 76-83 (2014).
54. Muruganandan, S. & Sinal, C. J. The impact of bone marrow adipocytes on osteoblast and osteoclast differentiation. IUBMB Life 66, 147-155 (2014).
55. Ambrosi, T. H.et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20, 771-784.e776 (2017).
56. Deepika, F., Bathina, S.& Armamento-Villareal, R. Novel adipokines and their role in bone metabolism: a narrative review. Biomedicines 11, 644 (2023).
57. Jin, C.et al. PCNA-associated factor P15(PAF), targeted by FOXM1, predicts poor prognosis in high-grade serous ovarian cancer patients. Int. J. Cancer 143, 2973-2984 (2018).
58. Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 493, 338-345 (2013).
59. Mossmann, D., Park, S. & Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 18, 744-757 (2018).
60. Hamann, J.et al.International union of basic and clinical pharmacology. xciv. adhesion G protein-coupled receptors. Pharmacol. Rev. 67, 338-367 (2015).
61. Black D. M.& Rosen, C. J. Clinical practice. Postmenopausal osteoporosis. N. Engl. J. Med. 374, 254-262 (2016).
62. Neer, R. M.et al.Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434-1441 (2001).
63. Balani, D. H., Ono, N.& Kronenberg, H. M. Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J. Clin. Invest. 127, 3327-3338 (2017).
64. Wu, X.et al. Inhibition of Sca-1-positive skeletal stem cell recruitment by alendronate blunts the anabolic effects of parathyroid hormone on bone remodeling. Cell Stem Cell 7, 571-580 (2010).
65. Qiu, T.et al.TGF-beta type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat. Cell Biol. 12, 224-234 (2010).
66. Li, C.-J.et al.Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J. Clin. Investig. 128, 5251-5266 (2018).
67. Cao, J. J.et al.Aging impairs IGF-I receptor activation and induces skeletal resistance to IGF-I. J. Bone Miner. Res. 22, 1271-1279 (2007).
68. Hoffman, C. M., Han, J. & Calvi, L. M. Impact of aging on bone, marrow and their interactions. Bone 119, 1-7 (2019).
69. Scheller, E. L.et al.Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat. Commun. 6, 7808(2015).
70. Zhen, G.et al.Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704-712 (2013).
71. Dou, C.et al.Sialylation of TLR2 initiates osteoclast fusion. Bone Res. 10, 24(2022).
72. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442-d450 (2019).
Funding
Hui Peng (penghui11083@csu.edu.cn)

Accesses

Citations

Detail

Sections
Recommended

/