1Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; 2Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
Show less
History+
Received
Revised
Published
14 Sep 2023
02 Mar 2024
10 Jul 2024
Issue Date
10 Jul 2024
Abstract
The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism. Among its various forms, skeletal interoception specifically regulates the metabolic homeostasis of bones. Osteoarthritis (OA) is a complex joint disorder involving cartilage, subchondral bone, and synovium. The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads. Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone, resulting in subchondral bone sclerosis in OA. The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA. In this review, we offer a general overview of interoception, specifically skeletal interoception, subchondral bone microenviroment and the aberrant subchondral remedeling. We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA, as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.
Dinglong Yang, Jiawen Xu, Ke Xu, Peng Xu.
Skeletal interoception in osteoarthritis. Bone Research, 2024, 12(0): 21 https://doi.org/10.1038/s41413-024-00328-6
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Quadt, L., Critchley, H. D.& Garfinkel, S. N. The neurobiology of interoception in health and disease. Ann. N. Y. Acad. Sci. 1428, 112-128 (2018). 2. Shu, S.et al.Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics. Adv. Mater. 35, e2211385(2023). 3. Park H. D.& Blanke, O. Coupling inner and outer body for self-consciousness. Trends Cogn. Sci. 23, 377-388 (2019). 4. Riddle R. C.& Clemens, T. L. Bone cell bioenergetics and skeletal energy homeostasis. Physiol. Rev. 97, 667-698 (2017). 5. Lv, X., Gao, F.& Cao, X. Skeletal interoception in bone homeostasis and pain. Cell Metab. 34, 1914-1931 (2022). 6. Yao, Q.et al.Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target Ther. 8, 56(2023). 7. Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745-1759 (2019). 8. Rizzo, M. G.et al.Therapeutic perspectives for inflammation and senescence in osteoarthritis using mesenchymal stem cells, mesenchymal stem cell-derived extracellular vesicles and senolytic agents. Cells 12, 1421 (2023). 9. Defois, A.et al.Osteoarthritic chondrocytes undergo a glycolysis-related metabolic switch upon exposure to IL-1b or TNF. Cell Commun. Signal 21, 137 (2023). 10. Chen, H.et al.Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun. 10, 181(2019). 11. Collins, J. A.et al.Cartilage-specific Sirt6 deficiency represses IGF-1 and enhances osteoarthritis severity in mice. Ann. Rheum. Dis. 82, 1464-1473 (2023). 12. Zappia, J.et al.Osteomodulin downregulation is associated with osteoarthritis development. Bone Res. 11, 49(2023). 13. Sun, Q.et al.Inhibition of PGE2 in subchondral bone attenuates osteoarthritis. Cells 11, 2760 (2022). 14. Jiang, W.et al.PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res. 10, 27(2022). 15. Zhu, J.et al.Aberrant subchondral osteoblastic metabolism modifies Na(V)1.8 for osteoarthritis. Elife 9, e57656 (2020). 16. Tu, M.et al.Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis. Bone Res. 7, 29(2019). 17. Levine D. N.Sherrington's “The integrative action of the nervous system”: a centennial appraisal. J. Neurol. Sci. 253, 1-6 (2007). 18. Khalsa, S. S.et al. Interoception and mental health: a roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 501-513 (2018). 19. Chen, W. G.et al.The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci. 44, 3-16 (2021). 20. Berntson G. G.& Khalsa, S. S. Neural circuits of interoception. Trends Neurosci. 44, 17-28 (2021). 21. Brazill J. M., Beeve A. T., Craft C. S., Ivanusic J. J.& Scheller, E. L. Nerves in bone: evolving concepts in pain and anabolism. J. Bone Min. Res. 34, 1393-1406 (2019). 22. Mantyh P. W.The neurobiology of skeletal pain. Eur. J. Neurosci. 39, 508-519 (2014). 23. Holt, M. K.et al.Synaptic inputs to the mouse dorsal vagal complex and its resident preproglucagon neurons. J. Neurosci. 39, 9767-9781 (2019). 24. Lowenstein, E. D.et al. Prox2 and Runx3 vagal sensory neurons regulate esophageal motility. Neuron 111, 2184-2200 (2023). 25. Chang R. B., Strochlic D. E., Williams E. K., Umans, B. D. & Liberles, S. D. Vagal sensory neuron subtypes that differentially control breathing. Cell 161, 622-633 (2015). 26. Waise T. M.Z., Dranse, H. J. & Lam, T. K. T. The metabolic role of vagal afferent innervation. Nat. Rev. Gastroenterol. Hepatol. 15, 625-636 (2018). 27. Ly, T.et al. Sequential appetite suppression by oral and visceral feedback to the brainstem. Nature 624, 130-137 (2023). 28. Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624-638 (2013). 29. Kowalski, J. L.et al.Resting state functional connectivity differentiation of neuropathic and nociceptive pain in individuals with chronic spinal cord injury. Neuroimage Clin. 38, 103414(2023). 30. Saper C. B.The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25, 433-469 (2002). 31. Phillips, J. W.et al.A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 1925-1935 (2019). 32. Saper C. B.& Lowell, B. B. The hypothalamus. Curr. Biol. 24, R1111-R1116 (2014). 33. Chiang, M. C.et al.Parabrachial complex: a hub for pain and aversion. J. Neurosci. 39, 8225-8230 (2019). 34. Lathe R., Singadia S., Jordan C.& Riedel, G. The interoceptive hippocampus: mouse brain endocrine receptor expression highlights a dentate gyrus (DG)- cornu ammonis (CA) challenge-sufficiency axis. PLoS One 15, e0227575 (2020). 35. Alexander, L.et al. Fractionating blunted reward processing characteristic of anhedonia by over-activating primate subgenual anterior cingulate cortex. Neuron 101, 307-320.e306 (2019). 36. Evrard H. C.The organization of the primate insular cortex. Front. Neuroanat. 13, 43(2019). 37. McDougall, S. J., Guo, H. & Andresen, M. C. Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala. J. Physiol. 595, 901-917 (2017). 38. Eickhoff, S. B.et al. Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study. Neuroimage 31, 1004-1014 (2006). 39. Joyce M. K.P. & Barbas, H. Cortical connections position primate area 25 as a keystone for interoception, emotion, and memory. J. Neurosci. 38, 1677-1698 (2018). 40. Namkung, H., Kim, S. H.& Sawa, A. The insula: an underestimated brain area in clinical neuroscience, psychiatry, and neurology. Trends Neurosci. 40, 200-207 (2017). 41. Critchley H. D., Wiens S., Rotshtein P., Ohman A.& Dolan, R. J. Neural systems supporting interoceptive awareness. Nat. Neurosci. 7, 189-195 (2004). 42. Khalsa S. S., Rudrauf D., Feinstein J. S.& Tranel, D. The pathways of interoceptive awareness. Nat. Neurosci. 12, 1494-1496 (2009). 43. Gu X., Hof P. R., Friston K. J.& Fan, J. Anterior insular cortex and emotional awareness. J. Comp. Neurol. 521, 3371-3388 (2013). 44. Abdo, H.et al. Specialized cutaneous Schwann cells initiate pain sensation. Science 365, 695-699 (2019). 45. Hanoun M., Maryanovich M., Arnal-Estape, A. & Frenette, P. S. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron 86, 360-373 (2015). 46. Elefteriou F.Impact of the autonomic nervous system on the skeleton. Physiol. Rev. 98, 1083-1112 (2018). 47. Kobori N., Moore A. N., Redell J. B.& Dash, P. K. Caudal DMN neurons innervate the spleen and release CART peptide to regulate neuroimmune function. J. Neuroinflammation 20, 158 (2023). 48. Takano T.& Yule, D. I. Ca2+ signals in pancreatic acinar cells in response to physiological stimulation in vivo. J. Physiol. 601, 2391-2405 (2023). 49. Askmyr, M., Quach, J. & Purton, L. E. Effects of the bone marrow microenvironment on hematopoietic malignancy. Bone 48, 115-120 (2011). 50. Zhou, R.et al.Endocrine role of bone in the regulation of energy metabolism. Bone Res. 9, 25(2021). 51. Bu T., Zheng J., Liu L., Li S.& Wu, J. Milk proteins and their derived peptides on bone health: biological functions, mechanisms, and prospects. Compr. Rev. Food Sci. Food Saf. 20, 2234-2262 (2021). 52. Crane J. L.& Cao, X. Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. J. Clin. Invest. 124, 466-472 (2014). 53. Hu, B.et al.Sensory nerve maintains intervertebral disc extracellular matrix homeostasis via CGRP/CHSY1 axis. Adv. Sci. (Weinh.) 9, e2202620(2022). 54. Xiao, Y.et al.Interoceptive regulation of skeletal tissue homeostasis and repair. Bone Res. 11, 48(2023). 55. Goldring M. B.& Goldring, S. R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N. Y. Acad. Sci. 1192, 230-237 (2010). 56. Holopainen, J. T.et al. Changes in subchondral bone mineral density and collagen matrix organization in growing horses. Bone 43, 1108-1114 (2008). 57. Hu, W.et al.Tumour dormancy in inflammatory microenvironment: a promising therapeutic strategy for cancer-related bone metastasis. Cell Mol. Life Sci. 77, 5149-5169 (2020). 58. Hu W., Chen Y., Dou C.& Dong, S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann. Rheum. Dis. 80, 413-422 (2021). 59. Hu Y., Chen X., Wang S., Jing Y.& Su, J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 9, 20(2021). 60. Hugle T.& Geurts, J. What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology (Oxford) 56, 1461-1471 (2017). 61. Zhen, G.et al.Mechanical stress determines the configuration of TGFbeta activation in articular cartilage. Nat. Commun. 12, 1706(2021). 62. Burr D. B.Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthr. Cartil. 12, S20-S30 (2004). 63. Chen, Y.et al.Abnormal subchondral bone remodeling and its association with articular cartilage degradation in knees of type 2 diabetes patients. Bone Res. 5, 17034(2017). 64. Suri, S.et al.Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann. Rheum. Dis. 66, 1423-1428 (2007). 65. Tomlinson, R. E.et al. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc. Natl. Acad. Sci. USA 114, E3632-E3641 (2017). 66. Xie, H.et al.PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20, 1270-1278 (2014). 67. Gao, X.et al.Leptin receptor(+) cells promote bone marrow innervation and regeneration by synthesizing nerve growth factor. Nat. Cell Biol. 25, 1746-1757 (2023). 68. Hatch, R. J., Jennings, E. A.& Ivanusic, J. J. Peripheral hyperpolarizationactivated cyclic nucleotide-gated channels contribute to inflammationinduced hypersensitivity of the rat temporomandibular joint. Eur. J. Pain. 17, 972-982 (2013). 69. Nagae, M., Hiraga, T.& Yoneda, T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J. Bone Min. Metab. 25, 99-104 (2007). 70. Kao F. C., Chiu P. Y., Tsai T. T.& Lin, Z. H. The application of nanogenerators and piezoelectricity in osteogenesis. Sci. Technol. Adv. Mater. 20, 1103-1117 (2019). 71. Robling, A. G., Castillo, A. B.& Turner, C. H. Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 8, 455-498 (2006). 72. Elmaleh-Sachs, A.et al. Obesity management in adults: a review. JAMA 330, 2000-2015 (2023). 73. Wheeler, T. A.et al. Mechanical loading of joint modulates T cells in lymph nodes to regulate osteoarthritis. Osteoarthritis Cartilage (2023). 74. Jin, Y.et al.Carbon dots derived from folic acid attenuates osteoarthritis by protecting chondrocytes through NF-kappaB/MAPK pathway and reprogramming macrophages. J. Nanobiotechnol. 20, 469(2022). 75. Prinz, E.et al.OA susceptibility in mice is partially mediated by the gut microbiome, is transferrable via microbiome transplantation and is associated with immunophenotype changes. Ann. Rheum. Dis. 83, 382-393 (2023). 76. Ding R., Zhang N., Wang Q.& Wang, W. Alterations of the subchondral bone in osteoarthritis: complying with Wolff's Law. Curr. Rheumatol. Rev. 18, 178-185 (2022). 77. Han, X.et al.Abnormal subchondral trabecular bone remodeling in knee osteoarthritis under the influence of knee alignment. Osteoarthr. Cartil. 30, 100-109 (2022). 78. Waterson M. J.& Horvath, T. L. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 22, 962-970 (2015). 79. Blackwell, K. A., Raisz, L. G.& Pilbeam, C. C. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol. Metab. 21, 294-301 (2010). 80. Guo, Q.et al.Unloading-induced skeletal interoception alters hypothalamic signaling to promote bone loss and fat metabolism. Adv. Sci. (Weinh) 10, e2305042(2023). 81. Bailey, K. N.et al.Mechanosensitive control of articular cartilage and subchondral bone homeostasis in mice requires osteocytic transforming growth factor beta signaling. Arthritis Rheumatol. 73, 414-425 (2021). 82. Sanchez C., Gabay O., Salvat C., Henrotin Y. E.& Berenbaum, F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthr. Cartil. 17, 473-481 (2009). 83. Goldring, S. R. Role of bone in osteoarthritis pathogenesis. Med. Clin. North Am. 93, 25-35 (2009). xv. 84. Yoshida, K.et al. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc. Natl. Acad. Sci. USA 99, 4580-4585 (2002). 85. Chartier S. R., Mitchell S. A. T., Majuta, L. A. & Mantyh, P. W. The changing sensory and sympathetic innervation of the young, adult and aging mouse femur. Neuroscience 387, 178-190 (2018). 86. Gil, C. M.et al.Myostatin and CXCL11 promote nervous tissue macrophages to maintain osteoarthritis pain. Brain Behav. Immun. 116, 203-215 (2023). 87. Tomlinson, R. E.et al.NGF-TrkA signaling by sensory nerves coordinates the vascularization and ossification of developing endochondral bone. Cell Rep. 16, 2723-2735 (2016). 88. Fong, H., Zheng, J. & Kurrasch, D. The structural and functional complexity of the integrative hypothalamus. Science 382, 388-394 (2023). 89. Yang, F.et al.A GABAergic neural circuit in the ventromedial hypothalamus mediates chronic stress-induced bone loss. J. Clin. Invest. 130, 6539-6554 (2020). 90. Oury, F.et al.CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev. 24, 2330-2342 (2010). 91. Lv, X.et al.Skeleton interoception regulates bone and fat metabolism through hypothalamic neuroendocrine NPY. Elife 10, e70324 (2021). 92. Takeda, S.et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305-317 (2002). 93. Guo, Q.et al.Sympathetic innervation regulates osteocyte-mediated cortical bone resorption during lactation. Adv. Sci. (Weinh.) 10, e2207602(2023). 94. Elefteriou, F.et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514-520 (2005). 95. Zhang, Y.et al.Neuronal induction of bone-fat imbalance through osteocyte neuropeptide Y. Adv. Sci. (Weinh.) 8, e2100808(2021). 96. Rosch, G.et al.beta2-adrenoceptor deficiency results in increased calcified cartilage thickness and subchondral bone remodeling in murine experimental osteoarthritis. Front. Immunol. 12, 801505(2021). 97. Rosch, G.et al.Sympathectomy aggravates subchondral bone changes during osteoarthritis progression in mice without affecting cartilage degeneration or synovial inflammation. Osteoarthr. Cartil. 30, 461-474 (2022). 98. Rosch, G., Zaucke, F.& Jenei-Lanzl, Z. Autonomic nervous regulation of cellular processes during subchondral bone remodeling in osteoarthritis. Am. J. Physiol. Cell Physiol. 325, C365-C384 (2023). 99. Hu, B.et al.Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. J. Clin. Invest. 130, 3483-3498 (2020). 100. Loh, K., Herzog, H.& Shi, Y. C. Regulation of energy homeostasis by the NPY system. Trends Endocrinol. Metab. 26, 125-135 (2015). 101. Garcia, T. B., Hollborn, M.& Bringmann, A. Expression and signaling of NGF in the healthy and injured retina. Cytokine Growth Factor Rev. 34, 43-57 (2017). 102. Jimenez-Andrade, J. M.et al. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain. Bone 46, 306-313 (2010). 103. Castaneda-Corral, G.et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 178, 196-207 (2011). 104. Li, Z.et al.Fracture repair requires TrkA signaling by skeletal sensory nerves. J. Clin. Invest. 129, 5137-5150 (2019). 105. Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2, 16072(2016). 106. Rockel J. S.& Kapoor, M. The metabolome and osteoarthritis: possible contributions to symptoms and pathology. Metabolites 8, 92 (2018). 107. Pandey A.& Bhutani, N. Profiling joint tissues at single-cell resolution: advances and insights. Nat. Rev. Rheumatol. 20, 7-20 (2023). 108. de Lange-Brokaar, B. J.et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthr. Cartil. 20, 1484-1499 (2012). 109. Myers, S. L.et al.Synovial inflammation in patients with early osteoarthritis of the knee. J. Rheumatol. 17, 1662-1669 (1990). 110. Loeuille, D.et al.Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum. 52, 3492-3501 (2005). 111. Knights, A. J., Redding, S. J.& Maerz, T. Inflammation in osteoarthritis: the latest progress and ongoing challenges. Curr. Opin. Rheumatol. 35, 128-134 (2023). 112. Scanzello, C. R. & Goldring, S. R. The role of synovitis in osteoarthritis pathogenesis. Bone 51, 249-257 (2012). 113. Robinson, W. H.et al.Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 580-592 (2016). 114. Ramezanpour, S.et al. Impact of sustained synovitis on knee joint structural degeneration: 4-year MRI data from the osteoarthritis initiative. J. Magn. Reson Imaging 57, 153-164 (2023). 115. Kc, R.et al.PKCdelta null mutations in a mouse model of osteoarthritis alter osteoarthritic pain independently of joint pathology by augmenting NGF/TrkAinduced axonal outgrowth. Ann. Rheum. Dis. 75, 2133-2141 (2016). 116. Blum, R., Kafitz, K. W. & Konnerth, A. Neurotrophin-evoked depolarization requires the sodium channel Na(V)1.9. Nature 419, 687-693 (2002). 117. Kafitz, K. W., Rose, C. R.& Konnerth, A. Neurotrophin-evoked rapid excitation of central neurons. Prog. Brain Res. 128, 243-249 (2000). 118. Kafitz K. W., Rose C. R., Thoenen, H. & Konnerth, A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401, 918-921 (1999). 119. InSug, O.-S. et al. Sensory neuron-specific deletion of tropomyosin receptor kinase A (TrkA) in mice abolishes osteoarthritis (OA) pain via NGF/TrkA intervention of peripheral sensitization. Int. J. Mol. Sci. 23, 12076(2022). 120. Perry, T. A., Yang, X., van Santen, J., Arden, N. K. & Kluzek, S. Quantitative and semiquantitative assessment of synovitis on MRI and the relationship with symptoms in symptomatic knee osteoarthritis. Rheumatology (Oxf.) 60, 1763-1773 (2021). 121. Martel-Pelletier, J., Pelletier, J. P. & Fahmi, H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin. Arthritis Rheum. 33, 155-167 (2003). 122. Wittenberg R. H., Willburger R. E., Kleemeyer K. S.& Peskar, B. A. In vitro release of prostaglandins and leukotrienes from synovial tissue, cartilage, and bone in degenerative joint diseases. Arthritis Rheum. 36, 1444-1450 (1993). 123. Benito M. J., Veale D. J., FitzGerald, O., van den Berg, W. B. & Bresnihan, B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis. 64, 1263-1267 (2005). 124. Chen, Q.et al.Xanthan gum protects rabbit articular chondrocytes against sodium nitroprusside-induced apoptosis in vitro. Carbohydr. Polym. 131, 363-369 (2015). 125. Hsueh M. F., Bolognesi M. P., Wellman S. S.& Kraus, V. B. Anti-inflammatory effects of naproxen sodium on human osteoarthritis synovial fluid immune cells. Osteoarthr. Cartil. 28, 639-645 (2020). 126. Sellam J.& Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625-635 (2010). 127. Silverstein, A. M.et al.Toward understanding the role of cartilage particulates in synovial inflammation. Osteoarthr. Cartil. 25, 1353-1361 (2017). 128. Kidd, B. L.et al. A neurogenic mechanism for symmetrical arthritis. Lancet 2, 1128-1130 (1989). 129. Elenkov I. J., Wilder R. L., Chrousos G. P.& Vizi, E. S. The sympathetic nerve-an integrative interface between two supersystems: the brain and the immune system. Pharm. Rev. 52, 595-638 (2000). 130. Pongratz G.& Straub, R. H. Role of peripheral nerve fibres in acute and chronic inflammation in arthritis. Nat. Rev. Rheumatol. 9, 117-126 (2013). 131. Fellinger K., Schmid J., Leonhartsberger F., Hofmann G.& Ferstl, A. Sympathetic block in primary chronic polyarthritis. Munch. Med. Wochenschr. 94, 1353-1360 (1952). 132. Levine, J. D., Goetzl, E. J.& Basbaum, A. I. Contribution of the nervous system to the pathophysiology of rheumatoid arthritis and other polyarthritides. Rheum. Dis. Clin. North Am. 13, 369-383 (1987). 133. Capellino, S.et al.Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann. Rheum. Dis. 69, 1853-1860 (2010). 134. Ebbinghaus M., Gajda M., Boettger M. K., Schaible H. G.& Brauer, R. The antiinflammatory effects of sympathectomy in murine antigen-induced arthritis are associated with a reduction of Th1 and Th17 responses. Ann. Rheum. Dis. 71, 253-261 (2012). 135. Harle P., Mobius D., Carr D. J., Scholmerich J.& Straub, R. H. An opposing timedependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum. 52, 1305-1313 (2005). 136. Straub, R. H.et al. Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 57, 911-921 (2008). 137. Miller L. E., Justen H. P., Scholmerich J.& Straub, R. H. The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J. 14, 2097-2107 (2000). 138. Eitner A., Pester J., Nietzsche S., Hofmann G. O.& Schaible, H. G. The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthr. Cartil. 21, 1383-1391 (2013). 139. Bassi, G. S.et al.Modulation of experimental arthritis by vagal sensory and central brain stimulation. Brain Behav. Immun. 64, 330-343 (2017). 140. Yoon, S. Y.et al.Peripheral bee venom's anti-inflammatory effect involves activation of the coeruleospinal pathway and sympathetic preganglionic neurons. Neurosci. Res. 59, 51-59 (2007). 141. O'Neill, E. & Harkin, A. Targeting the noradrenergic system for anti-inflammatory and neuroprotective effects: implications for Parkinson's disease. Neural Regen. Res. 13, 1332-1337 (2018). 142. Ben-Shaanan, T. L. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 22, 940-944 (2016). 143. Ben-Shaanan, T. L. et al. Modulation of anti-tumor immunity by the brain's reward system. Nat. Commun. 9, 2723(2018). 144. Zhang, B.et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577, 676-681 (2020). 145. Fang H.& Beier, F. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat. Rev. Rheumatol. 10, 413-421 (2014). 146. Mueller A. J., Peffers M. J., Proctor C. J.& Clegg, P. D. Systems approaches in osteoarthritis: identifying routes to novel diagnostic and therapeutic strategies. J. Orthop. Res. 35, 1573-1588 (2017). 147. Krasselt M.& Baerwald, C. Celecoxib for the treatment of musculoskeletal arthritis. Expert Opin. Pharmacother. 20, 1689-1702 (2019). 148. Iyer J. P., Srivastava P. K., Dev R., Dastidar, S. G. & Ray, A. Prostaglandin E2 synthase inhibition as a therapeutic target. Expert Opin. Ther. Targets 13, 849-865 (2009). 149. Bian, Q.et al.Excessive activation of TGFbeta by spinal instability causes vertebral endplate sclerosis. Sci. Rep. 6, 27093(2016). 150. Ni, S.et al.Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nat. Commun. 10, 5643(2019). 151. Zhu, S.et al.Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest. 129, 1076-1093 (2019). 152. Panahifar, A.et al.Development and reliability of a multi-modality scoring system for evaluation of disease progression in pre-clinical models of osteoarthritis: celecoxib may possess disease-modifying properties. Osteoarthr. Cartil. 22, 1639-1650 (2014). 153. Akatsu, T.et al.Prostaglandins promote osteoclastlike cell formation by a mechanism involving cyclic adenosine 3',5'-monophosphate in mouse bone marrow cell cultures. J. Bone Min. Res. 4, 29-35 (1989). 154. Tellegen, A. R.et al.Controlled release of celecoxib inhibits inflammation, bone cysts and osteophyte formation in a preclinical model of osteoarthritis. Drug Deliv. 25, 1438-1447 (2018). 155. Xue, P.et al.PGE2/EP4 skeleton interoception activity reduces vertebral endplate porosity and spinal pain with low-dose celecoxib. Bone Res. 9, 36(2021). 156. Liu, S.et al. A neuroanatomical basis for electroacupuncture to drive the vagaladrenal axis. Nature 598, 641-645 (2021). 157. Chen, W.et al.Electroacupuncture activated local sympathetic noradrenergic signaling to relieve synovitis and referred pain behaviors in knee osteoarthritis rats. Front. Mol. Neurosci. 16, 1069965(2023). 158. Inoue, H.et al.Production of neuropeptide substance P by synovial fibroblasts from patients with rheumatoid arthritis and osteoarthritis. Neurosci. Lett. 303, 149-152 (2001). 159. Liu, L., Dana, R.& Yin, J. Sensory neurons directly promote angiogenesis in response to inflammation via substance P signaling. FASEB J. 34, 6229-6243 (2020). 160. Heikkila H. M.,Hielm-Bjorkman, A. K., Innes, J. F. & Laitinen-Vapaavuori, O. M. The effect of intra-articular botulinum toxin A on substance P, prostaglandin E(2), and tumor necrosis factor alpha in the canine osteoarthritic joint. BMC Vet. Res. 13, 74(2017). 161. Im, H. J.et al.Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. J. Cell Physiol. 215, 452-463 (2008). 162. Warner, S. C.et al.Pain in knee osteoarthritis is associated with variation in the neurokinin 1/substance P receptor (TACR1) gene. Eur. J. Pain. 21, 1277-1284 (2017). 163. Jin, Y.et al.A novel prostaglandin E receptor 4 (EP4) small molecule antagonist induces articular cartilage regeneration. Cell Discov. 8, 24(2022). 164. Walsh, D. A.et al.Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxf.) 49, 1852-1861 (2010). 165. Pecchi, E.et al.Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res. Ther. 16, R16(2014). 166. Nencini, S.et al.Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain. Mol. Pain. 13, 1744806917697011(2017). 167. Zhen, G.et al.Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704-712 (2013). 168. Stockl, S.et al.Substance P and alpha-calcitonin gene-related peptide differentially affect human osteoarthritic and healthy chondrocytes. Front. Immunol. 12, 722884(2021). 169. Bohm, M.et al.alpha-MSH modulates cell adhesion and inflammatory responses of synovial fibroblasts from osteoarthritis patients. Biochem. Pharm. 116, 89-99 (2016). 170. Can, V. C.et al.Novel anti-inflammatory and chondroprotective effects of the human melanocortin MC1 receptor agonist BMS-470539 dihydrochloride and human melanocortin MC3 receptor agonist PG-990 on lipopolysaccharide activated chondrocytes. Eur. J. Pharm. 872, 172971(2020). 171. Su, W.et al.Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 5, e135446 (2020). 172. Cui, Z.et al.Endothelial PDGF-BB/PDGFR-beta signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Res. 10, 58(2022). 173. Opolka A., Straub R. H., Pasoldt A., Grifka J.& Grassel, S. Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. Arthritis Rheum. 64, 729-739 (2012). 174. Lorenz, J.et al.Norepinephrine modulates osteoarthritic chondrocyte metabolism and inflammatory responses. Osteoarthr. Cartil. 24, 325-334 (2016). 175. Hwang H. S., Lee M. H., Go D. J.& Kim, H. A. Norepinephrine modulates IL- 1beta-induced catabolic response of human chondrocytes. BMC Musculoskelet. Disord. 22, 724(2021). 176. El Bagdadi, K., Zaucke, F., Meurer, A., Straub, R. H. & Jenei-Lanzl, Z. Norepinephrine inhibits synovial adipose stem cell chondrogenesis via alpha2aadrenoceptor- mediated ERK1/2 activation. Int. J. Mol. Sci. 20, 3127(2019). 177. Perez-Garcia, S. et al. Proteomic analysis of synovial fibroblasts and articular chondrocytes co-cultures reveals valuable VIP-modulated inflammatory and degradative proteins in osteoarthritis. Int. J. Mol. Sci. 22, 6441(2021). 178. Liang, Y.et al.Vasoactive intestinal peptide alleviates osteoarthritis effectively via inhibiting NF-kappaB signaling pathway. J. Biomed. Sci. 25, 25(2018). 179. Perez-Garcia, S. et al. VIP and CRF reduce ADAMTS expression and function in osteoarthritis synovial fibroblasts. J. Cell Mol. Med. 20, 678-687 (2016). 180. Wang, L.et al.Levels of neuropeptide Y in synovial fluid relate to pain in patients with knee osteoarthritis. BMC Musculoskelet. Disord. 15, 319(2014). 181. Ferreira-Gomes, J., Adaes, S., Sousa, R. M., Mendonca, M. & Castro-Lopes, J. M. Dose-dependent expression of neuronal injury markers during experimental osteoarthritis induced by monoiodoacetate in the rat. Mol. Pain. 8, 50(2012). 182. Kang, X.et al.Neuropeptide Y acts directly on cartilage homeostasis and exacerbates progression of osteoarthritis through NPY2R. J. Bone Min. Res. 35, 1375-1384 (2020). 183. Hori A., Nishida T., Takashiba S., Kubota S.& Takigawa, M. Regulatory mechanism of CCN2 production by serotonin (5-HT) via 5-HT2A and 5-HT2B receptors in chondrocytes. PLoS One 12, e0188014 (2017). 184. Stratz C., Anakwue J., Bhatia H., Pitz S.& Fiebich, B. L. Anti-inflammatory effects of 5-HT3 receptor antagonists in interleukin-1beta stimulated primary human chondrocytes. Int. Immunopharmacol. 22, 160-166 (2014).
Funding
Peng Xu (xupeng369@mail.xjtu.edu.cn)
AI Summary ×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.