Skeletal interoception in osteoarthritis

Dinglong Yang , Jiawen Xu , Ke Xu , Peng Xu

Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 22

PDF
Bone Research ›› 2024, Vol. 12 ›› Issue (1) : 22 DOI: 10.1038/s41413-024-00328-6
Review Article

Skeletal interoception in osteoarthritis

Author information +
History +
PDF

Abstract

The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism. Among its various forms, skeletal interoception specifically regulates the metabolic homeostasis of bones. Osteoarthritis (OA) is a complex joint disorder involving cartilage, subchondral bone, and synovium. The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads. Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone, resulting in subchondral bone sclerosis in OA. The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA. In this review, we offer a general overview of interoception, specifically skeletal interoception, subchondral bone microenviroment and the aberrant subchondral remedeling. We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA, as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.

Cite this article

Download citation ▾
Dinglong Yang, Jiawen Xu, Ke Xu, Peng Xu. Skeletal interoception in osteoarthritis. Bone Research, 2024, 12(1): 22 DOI:10.1038/s41413-024-00328-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Quadt L, Critchley HD, Garfinkel SN. The neurobiology of interoception in health and disease. Ann. N. Y. Acad. Sci., 2018, 1428: 112-128

[2]

Shu S et al. Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics. Adv. Mater., 2023, 35

[3]

Park HD, Blanke O. Coupling inner and outer body for self-consciousness. Trends Cogn. Sci., 2019, 23: 377-388

[4]

Riddle RC, Clemens TL. Bone cell bioenergetics and skeletal energy homeostasis. Physiol. Rev., 2017, 97: 667-698

[5]

Lv X, Gao F, Cao X. Skeletal interoception in bone homeostasis and pain. Cell Metab., 2022, 34: 1914-1931

[6]

Yao Q et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target Ther., 2023, 8: 56

[7]

Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet, 2019, 393: 1745-1759

[8]

Rizzo MG et al. Therapeutic perspectives for inflammation and senescence in osteoarthritis using mesenchymal stem cells, mesenchymal stem cell-derived extracellular vesicles and senolytic agents. Cells, 2023, 12: 1421

[9]

Defois A et al. Osteoarthritic chondrocytes undergo a glycolysis-related metabolic switch upon exposure to IL-1b or TNF. Cell Commun. Signal, 2023, 21

[10]

Chen H et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun., 2019, 10

[11]

Collins JA et al. Cartilage-specific Sirt6 deficiency represses IGF-1 and enhances osteoarthritis severity in mice. Ann. Rheum. Dis., 2023, 82: 1464-1473

[12]

Zappia J et al. Osteomodulin downregulation is associated with osteoarthritis development. Bone Res., 2023, 11: 49

[13]

Sun Q et al. Inhibition of PGE2 in subchondral bone attenuates osteoarthritis. Cells, 2022, 11: 2760

[14]

Jiang W et al. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res., 2022, 10: 27

[15]

Zhu J et al. Aberrant subchondral osteoblastic metabolism modifies Na(V)1.8 for osteoarthritis. Elife, 2020, 9: e57656

[16]

Tu M et al. Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis. Bone Res., 2019, 7: 29

[17]

Levine DN. Sherrington’s “The integrative action of the nervous system”: a centennial appraisal. J. Neurol. Sci., 2007, 253: 1-6

[18]

Khalsa SS et al. Interoception and mental health: a roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2018, 3: 501-513

[19]

Chen WG et al. The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci., 2021, 44: 3-16

[20]

Berntson GG, Khalsa SS. Neural circuits of interoception. Trends Neurosci., 2021, 44: 17-28

[21]

Brazill JM, Beeve AT, Craft CS, Ivanusic JJ, Scheller EL. Nerves in bone: evolving concepts in pain and anabolism. J. Bone Min. Res., 2019, 34: 1393-1406

[22]

Mantyh PW. The neurobiology of skeletal pain. Eur. J. Neurosci., 2014, 39: 508-519

[23]

Holt MK et al. Synaptic inputs to the mouse dorsal vagal complex and its resident preproglucagon neurons. J. Neurosci., 2019, 39: 9767-9781

[24]

Lowenstein, E. D. et al. Prox2 and Runx3 vagal sensory neurons regulate esophageal motility. Neuron 111, 2184-2200 (2023).

[25]

Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. Vagal sensory neuron subtypes that differentially control breathing. Cell, 2015, 161: 622-633

[26]

Waise TMZ, Dranse HJ, Lam TKT. The metabolic role of vagal afferent innervation. Nat. Rev. Gastroenterol. Hepatol., 2018, 15: 625-636

[27]

Ly, T. et al. Sequential appetite suppression by oral and visceral feedback to the brainstem. Nature 624, 130-137 (2023).

[28]

Critchley HD, Harrison NA. Visceral influences on brain and behavior. Neuron, 2013, 77: 624-638

[29]

Kowalski JL et al. Resting state functional connectivity differentiation of neuropathic and nociceptive pain in individuals with chronic spinal cord injury. Neuroimage Clin., 2023, 38

[30]

Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci., 2002, 25: 433-469

[31]

Phillips JW et al. A repeated molecular architecture across thalamic pathways. Nat. Neurosci., 2019, 22: 1925-1935

[32]

Saper CB, Lowell BB. The hypothalamus. Curr. Biol., 2014, 24: R1111-R1116

[33]

Chiang MC et al. Parabrachial complex: a hub for pain and aversion. J. Neurosci., 2019, 39: 8225-8230

[34]

Lathe R, Singadia S, Jordan C, Riedel G. The interoceptive hippocampus: mouse brain endocrine receptor expression highlights a dentate gyrus (DG)-cornu ammonis (CA) challenge-sufficiency axis. PLoS One, 2020, 15: e0227575

[35]

Alexander L et al. Fractionating blunted reward processing characteristic of anhedonia by over-activating primate subgenual anterior cingulate cortex. Neuron, 2019, 101: 307-320.e306

[36]

Evrard HC. The organization of the primate insular cortex. Front. Neuroanat., 2019, 13: 43

[37]

McDougall SJ, Guo H, Andresen MC. Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala. J. Physiol., 2017, 595: 901-917

[38]

Eickhoff SB et al. Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study. Neuroimage, 2006, 31: 1004-1014

[39]

Joyce MKP, Barbas H. Cortical connections position primate area 25 as a keystone for interoception, emotion, and memory. J. Neurosci., 2018, 38: 1677-1698

[40]

Namkung H, Kim SH, Sawa A. The insula: an underestimated brain area in clinical neuroscience, psychiatry, and neurology. Trends Neurosci., 2017, 40: 200-207

[41]

Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat. Neurosci., 2004, 7: 189-195

[42]

Khalsa SS, Rudrauf D, Feinstein JS, Tranel D. The pathways of interoceptive awareness. Nat. Neurosci., 2009, 12: 1494-1496

[43]

Gu X, Hof PR, Friston KJ, Fan J. Anterior insular cortex and emotional awareness. J. Comp. Neurol., 2013, 521: 3371-3388

[44]

Abdo H et al. Specialized cutaneous Schwann cells initiate pain sensation. Science, 2019, 365: 695-699

[45]

Hanoun M, Maryanovich M, Arnal-Estape A, Frenette PS. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron, 2015, 86: 360-373

[46]

Elefteriou F. Impact of the autonomic nervous system on the skeleton. Physiol. Rev., 2018, 98: 1083-1112

[47]

Kobori N, Moore AN, Redell JB, Dash PK. Caudal DMN neurons innervate the spleen and release CART peptide to regulate neuroimmune function. J. Neuroinflammation, 2023, 20

[48]

Takano T, Yule DI. Ca2+ signals in pancreatic acinar cells in response to physiological stimulation in vivo. J. Physiol., 2023, 601: 2391-2405

[49]

Askmyr M, Quach J, Purton LE. Effects of the bone marrow microenvironment on hematopoietic malignancy. Bone, 2011, 48: 115-120

[50]

Zhou R et al. Endocrine role of bone in the regulation of energy metabolism. Bone Res., 2021, 9: 25

[51]

Bu T, Zheng J, Liu L, Li S, Wu J. Milk proteins and their derived peptides on bone health: biological functions, mechanisms, and prospects. Compr. Rev. Food Sci. Food Saf., 2021, 20: 2234-2262

[52]

Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. J. Clin. Invest., 2014, 124: 466-472

[53]

Hu B et al. Sensory nerve maintains intervertebral disc extracellular matrix homeostasis via CGRP/CHSY1 axis. Adv. Sci. (Weinh.), 2022, 9

[54]

Xiao Y et al. Interoceptive regulation of skeletal tissue homeostasis and repair. Bone Res., 2023, 11: 48

[55]

Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N. Y. Acad. Sci., 2010, 1192: 230-237

[56]

Holopainen JT et al. Changes in subchondral bone mineral density and collagen matrix organization in growing horses. Bone, 2008, 43: 1108-1114

[57]

Hu W et al. Tumour dormancy in inflammatory microenvironment: a promising therapeutic strategy for cancer-related bone metastasis. Cell Mol. Life Sci., 2020, 77: 5149-5169

[58]

Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann. Rheum. Dis., 2021, 80: 413-422

[59]

Hu Y, Chen X, Wang S, Jing Y, Su J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res., 2021, 9: 20

[60]

Hugle T, Geurts J. What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology (Oxford), 2017, 56: 1461-1471

[61]

Zhen G et al. Mechanical stress determines the configuration of TGFbeta activation in articular cartilage. Nat. Commun., 2021, 12

[62]

Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthr. Cartil., 2004, 12: S20-S30

[63]

Chen Y et al. Abnormal subchondral bone remodeling and its association with articular cartilage degradation in knees of type 2 diabetes patients. Bone Res., 2017, 5: 17034

[64]

Suri S et al. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann. Rheum. Dis., 2007, 66: 1423-1428

[65]

Tomlinson RE et al. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc. Natl. Acad. Sci. USA, 2017, 114: E3632-E3641

[66]

Xie H et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med., 2014, 20: 1270-1278

[67]

Gao X et al. Leptin receptor(+) cells promote bone marrow innervation and regeneration by synthesizing nerve growth factor. Nat. Cell Biol., 2023, 25: 1746-1757

[68]

Hatch RJ, Jennings EA, Ivanusic JJ. Peripheral hyperpolarization-activated cyclic nucleotide-gated channels contribute to inflammation-induced hypersensitivity of the rat temporomandibular joint. Eur. J. Pain., 2013, 17: 972-982

[69]

Nagae M, Hiraga T, Yoneda T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J. Bone Min. Metab., 2007, 25: 99-104

[70]

Kao FC, Chiu PY, Tsai TT, Lin ZH. The application of nanogenerators and piezoelectricity in osteogenesis. Sci. Technol. Adv. Mater., 2019, 20: 1103-1117

[71]

Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng., 2006, 8: 455-498

[72]

Elmaleh-Sachs A et al. Obesity management in adults: a review. JAMA, 2023, 330: 2000-2015

[73]

Wheeler, T. A. et al. Mechanical loading of joint modulates T cells in lymph nodes to regulate osteoarthritis. Osteoarthritis Cartilage (2023).

[74]

Jin Y et al. Carbon dots derived from folic acid attenuates osteoarthritis by protecting chondrocytes through NF-kappaB/MAPK pathway and reprogramming macrophages. J. Nanobiotechnol., 2022, 20

[75]

Prinz, E. et al. OA susceptibility in mice is partially mediated by the gut microbiome, is transferrable via microbiome transplantation and is associated with immunophenotype changes. Ann. Rheum. Dis. 83, 382-393 (2023).

[76]

Ding R, Zhang N, Wang Q, Wang W. Alterations of the subchondral bone in osteoarthritis: complying with Wolff’s Law. Curr. Rheumatol. Rev., 2022, 18: 178-185

[77]

Han X et al. Abnormal subchondral trabecular bone remodeling in knee osteoarthritis under the influence of knee alignment. Osteoarthr. Cartil., 2022, 30: 100-109

[78]

Waterson MJ, Horvath TL. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab., 2015, 22: 962-970

[79]

Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol. Metab., 2010, 21: 294-301

[80]

Guo, Q. et al. Unloading-induced skeletal interoception alters hypothalamic signaling to promote bone loss and fat metabolism. Adv. Sci. (Weinh) 10, e2305042 (2023).

[81]

Bailey KN et al. Mechanosensitive control of articular cartilage and subchondral bone homeostasis in mice requires osteocytic transforming growth factor beta signaling. Arthritis Rheumatol., 2021, 73: 414-425

[82]

Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthr. Cartil., 2009, 17: 473-481

[83]

Goldring SR. Role of bone in osteoarthritis pathogenesis. Med. Clin. North Am., 2009, 93: 25-35 xv

[84]

Yoshida K et al. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc. Natl. Acad. Sci. USA, 2002, 99: 4580-4585

[85]

Chartier SR, Mitchell SAT, Majuta LA, Mantyh PW. The changing sensory and sympathetic innervation of the young, adult and aging mouse femur. Neuroscience, 2018, 387: 178-190

[86]

Gil, C. M. et al. Myostatin and CXCL11 promote nervous tissue macrophages to maintain osteoarthritis pain. Brain Behav. Immun. 116, 203-215 (2023).

[87]

Tomlinson RE et al. NGF-TrkA signaling by sensory nerves coordinates the vascularization and ossification of developing endochondral bone. Cell Rep., 2016, 16: 2723-2735

[88]

Fong H, Zheng J, Kurrasch D. The structural and functional complexity of the integrative hypothalamus. Science, 2023, 382: 388-394

[89]

Yang F et al. A GABAergic neural circuit in the ventromedial hypothalamus mediates chronic stress-induced bone loss. J. Clin. Invest., 2020, 130: 6539-6554

[90]

Oury F et al. CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev., 2010, 24: 2330-2342

[91]

Lv X et al. Skeleton interoception regulates bone and fat metabolism through hypothalamic neuroendocrine NPY. Elife, 2021, 10: e70324

[92]

Takeda S et al. Leptin regulates bone formation via the sympathetic nervous system. Cell, 2002, 111: 305-317

[93]

Guo Q et al. Sympathetic innervation regulates osteocyte-mediated cortical bone resorption during lactation. Adv. Sci. (Weinh.), 2023, 10

[94]

Elefteriou F et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature, 2005, 434: 514-520

[95]

Zhang Y et al. Neuronal induction of bone-fat imbalance through osteocyte neuropeptide Y. Adv. Sci. (Weinh.), 2021, 8

[96]

Rosch G et al. beta2-adrenoceptor deficiency results in increased calcified cartilage thickness and subchondral bone remodeling in murine experimental osteoarthritis. Front. Immunol., 2021, 12

[97]

Rosch G et al. Sympathectomy aggravates subchondral bone changes during osteoarthritis progression in mice without affecting cartilage degeneration or synovial inflammation. Osteoarthr. Cartil., 2022, 30: 461-474

[98]

Rosch G, Zaucke F, Jenei-Lanzl Z. Autonomic nervous regulation of cellular processes during subchondral bone remodeling in osteoarthritis. Am. J. Physiol. Cell Physiol., 2023, 325: C365-C384

[99]

Hu B et al. Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. J. Clin. Invest., 2020, 130: 3483-3498

[100]

Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol. Metab., 2015, 26: 125-135

[101]

Garcia TB, Hollborn M, Bringmann A. Expression and signaling of NGF in the healthy and injured retina. Cytokine Growth Factor Rev., 2017, 34: 43-57

[102]

Jimenez-Andrade JM et al. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain. Bone, 2010, 46: 306-313

[103]

Castaneda-Corral G et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience, 2011, 178: 196-207

[104]

Li Z et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J. Clin. Invest., 2019, 129: 5137-5150

[105]

Martel-Pelletier J et al. Osteoarthritis. Nat. Rev. Dis. Prim., 2016, 2

[106]

Rockel JS, Kapoor M. The metabolome and osteoarthritis: possible contributions to symptoms and pathology. Metabolites, 2018, 8: 92

[107]

Pandey, A. & Bhutani, N. Profiling joint tissues at single-cell resolution: advances and insights. Nat. Rev. Rheumatol. 20, 7-20 (2023).

[108]

de Lange-Brokaar BJ et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthr. Cartil., 2012, 20: 1484-1499

[109]

Myers SL et al. Synovial inflammation in patients with early osteoarthritis of the knee. J. Rheumatol., 1990, 17: 1662-1669

[110]

Loeuille D et al. Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum., 2005, 52: 3492-3501

[111]

Knights AJ, Redding SJ, Maerz T. Inflammation in osteoarthritis: the latest progress and ongoing challenges. Curr. Opin. Rheumatol., 2023, 35: 128-134

[112]

Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone, 2012, 51: 249-257

[113]

Robinson WH et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol., 2016, 12: 580-592

[114]

Ramezanpour S et al. Impact of sustained synovitis on knee joint structural degeneration: 4-year MRI data from the osteoarthritis initiative. J. Magn. Reson Imaging, 2023, 57: 153-164

[115]

Kc R et al. PKCdelta null mutations in a mouse model of osteoarthritis alter osteoarthritic pain independently of joint pathology by augmenting NGF/TrkA-induced axonal outgrowth. Ann. Rheum. Dis., 2016, 75: 2133-2141

[116]

Blum R, Kafitz KW, Konnerth A. Neurotrophin-evoked depolarization requires the sodium channel Na(V)1.9. Nature, 2002, 419: 687-693

[117]

Kafitz KW, Rose CR, Konnerth A. Neurotrophin-evoked rapid excitation of central neurons. Prog. Brain Res., 2000, 128: 243-249

[118]

Kafitz KW, Rose CR, Thoenen H, Konnerth A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature, 1999, 401: 918-921

[119]

InSug O-S et al. Sensory neuron-specific deletion of tropomyosin receptor kinase A (TrkA) in mice abolishes osteoarthritis (OA) pain via NGF/TrkA intervention of peripheral sensitization. Int. J. Mol. Sci., 2022, 23: 12076

[120]

Perry TA, Yang X, van Santen J, Arden NK, Kluzek S. Quantitative and semi-quantitative assessment of synovitis on MRI and the relationship with symptoms in symptomatic knee osteoarthritis. Rheumatology (Oxf.), 2021, 60: 1763-1773

[121]

Martel-Pelletier J, Pelletier JP, Fahmi H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin. Arthritis Rheum., 2003, 33: 155-167

[122]

Wittenberg RH, Willburger RE, Kleemeyer KS, Peskar BA. In vitro release of prostaglandins and leukotrienes from synovial tissue, cartilage, and bone in degenerative joint diseases. Arthritis Rheum., 1993, 36: 1444-1450

[123]

Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis., 2005, 64: 1263-1267

[124]

Chen Q et al. Xanthan gum protects rabbit articular chondrocytes against sodium nitroprusside-induced apoptosis in vitro. Carbohydr. Polym., 2015, 131: 363-369

[125]

Hsueh MF, Bolognesi MP, Wellman SS, Kraus VB. Anti-inflammatory effects of naproxen sodium on human osteoarthritis synovial fluid immune cells. Osteoarthr. Cartil., 2020, 28: 639-645

[126]

Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol., 2010, 6: 625-635

[127]

Silverstein AM et al. Toward understanding the role of cartilage particulates in synovial inflammation. Osteoarthr. Cartil., 2017, 25: 1353-1361

[128]

Kidd BL et al. A neurogenic mechanism for symmetrical arthritis. Lancet, 1989, 2: 1128-1130

[129]

Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharm. Rev., 2000, 52: 595-638

[130]

Pongratz G, Straub RH. Role of peripheral nerve fibres in acute and chronic inflammation in arthritis. Nat. Rev. Rheumatol., 2013, 9: 117-126

[131]

Fellinger K, Schmid J, Leonhartsberger F, Hofmann G, Ferstl A. Sympathetic block in primary chronic polyarthritis. Munch. Med. Wochenschr., 1952, 94: 1353-1360

[132]

Levine JD, Goetzl EJ, Basbaum AI. Contribution of the nervous system to the pathophysiology of rheumatoid arthritis and other polyarthritides. Rheum. Dis. Clin. North Am., 1987, 13: 369-383

[133]

Capellino S et al. Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann. Rheum. Dis., 2010, 69: 1853-1860

[134]

Ebbinghaus M, Gajda M, Boettger MK, Schaible HG, Brauer R. The anti-inflammatory effects of sympathectomy in murine antigen-induced arthritis are associated with a reduction of Th1 and Th17 responses. Ann. Rheum. Dis., 2012, 71: 253-261

[135]

Harle P, Mobius D, Carr DJ, Scholmerich J, Straub RH. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum., 2005, 52: 1305-1313

[136]

Straub RH et al. Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut, 2008, 57: 911-921

[137]

Miller LE, Justen HP, Scholmerich J, Straub RH. The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J., 2000, 14: 2097-2107

[138]

Eitner A, Pester J, Nietzsche S, Hofmann GO, Schaible HG. The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthr. Cartil., 2013, 21: 1383-1391

[139]

Bassi GS et al. Modulation of experimental arthritis by vagal sensory and central brain stimulation. Brain Behav. Immun., 2017, 64: 330-343

[140]

Yoon SY et al. Peripheral bee venom’s anti-inflammatory effect involves activation of the coeruleospinal pathway and sympathetic preganglionic neurons. Neurosci. Res., 2007, 59: 51-59

[141]

O’Neill E, Harkin A. Targeting the noradrenergic system for anti-inflammatory and neuroprotective effects: implications for Parkinson’s disease. Neural Regen. Res., 2018, 13: 1332-1337

[142]

Ben-Shaanan TL et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med., 2016, 22: 940-944

[143]

Ben-Shaanan TL et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat. Commun., 2018, 9

[144]

Zhang B et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature, 2020, 577: 676-681

[145]

Fang H, Beier F. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat. Rev. Rheumatol., 2014, 10: 413-421

[146]

Mueller AJ, Peffers MJ, Proctor CJ, Clegg PD. Systems approaches in osteoarthritis: identifying routes to novel diagnostic and therapeutic strategies. J. Orthop. Res., 2017, 35: 1573-1588

[147]

Krasselt M, Baerwald C. Celecoxib for the treatment of musculoskeletal arthritis. Expert Opin. Pharmacother., 2019, 20: 1689-1702

[148]

Iyer JP, Srivastava PK, Dev R, Dastidar SG, Ray A. Prostaglandin E2 synthase inhibition as a therapeutic target. Expert Opin. Ther. Targets, 2009, 13: 849-865

[149]

Bian Q et al. Excessive activation of TGFbeta by spinal instability causes vertebral endplate sclerosis. Sci. Rep., 2016, 6

[150]

Ni S et al. Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nat. Commun., 2019, 10

[151]

Zhu S et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest., 2019, 129: 1076-1093

[152]

Panahifar A et al. Development and reliability of a multi-modality scoring system for evaluation of disease progression in pre-clinical models of osteoarthritis: celecoxib may possess disease-modifying properties. Osteoarthr. Cartil., 2014, 22: 1639-1650

[153]

Akatsu T et al. Prostaglandins promote osteoclastlike cell formation by a mechanism involving cyclic adenosine 3’,5’-monophosphate in mouse bone marrow cell cultures. J. Bone Min. Res., 1989, 4: 29-35

[154]

Tellegen AR et al. Controlled release of celecoxib inhibits inflammation, bone cysts and osteophyte formation in a preclinical model of osteoarthritis. Drug Deliv., 2018, 25: 1438-1447

[155]

Xue P et al. PGE2/EP4 skeleton interoception activity reduces vertebral endplate porosity and spinal pain with low-dose celecoxib. Bone Res., 2021, 9: 36

[156]

Liu S et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis. Nature, 2021, 598: 641-645

[157]

Chen W et al. Electroacupuncture activated local sympathetic noradrenergic signaling to relieve synovitis and referred pain behaviors in knee osteoarthritis rats. Front. Mol. Neurosci., 2023, 16

[158]

Inoue H et al. Production of neuropeptide substance P by synovial fibroblasts from patients with rheumatoid arthritis and osteoarthritis. Neurosci. Lett., 2001, 303: 149-152

[159]

Liu L, Dana R, Yin J. Sensory neurons directly promote angiogenesis in response to inflammation via substance P signaling. FASEB J., 2020, 34: 6229-6243

[160]

Heikkila HM, Hielm-Bjorkman AK, Innes JF, Laitinen-Vapaavuori OM. The effect of intra-articular botulinum toxin A on substance P, prostaglandin E(2), and tumor necrosis factor alpha in the canine osteoarthritic joint. BMC Vet. Res., 2017, 13: 74

[161]

Im HJ et al. Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. J. Cell Physiol., 2008, 215: 452-463

[162]

Warner SC et al. Pain in knee osteoarthritis is associated with variation in the neurokinin 1/substance P receptor (TACR1) gene. Eur. J. Pain., 2017, 21: 1277-1284

[163]

Jin Y et al. A novel prostaglandin E receptor 4 (EP4) small molecule antagonist induces articular cartilage regeneration. Cell Discov., 2022, 8: 24

[164]

Walsh DA et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxf.), 2010, 49: 1852-1861

[165]

Pecchi E et al. Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res. Ther., 2014, 16: R16

[166]

Nencini S et al. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain. Mol. Pain., 2017, 13

[167]

Zhen G et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med., 2013, 19: 704-712

[168]

Stockl S et al. Substance P and alpha-calcitonin gene-related peptide differentially affect human osteoarthritic and healthy chondrocytes. Front. Immunol., 2021, 12

[169]

Bohm M et al. alpha-MSH modulates cell adhesion and inflammatory responses of synovial fibroblasts from osteoarthritis patients. Biochem. Pharm., 2016, 116: 89-99

[170]

Can VC et al. Novel anti-inflammatory and chondroprotective effects of the human melanocortin MC1 receptor agonist BMS-470539 dihydrochloride and human melanocortin MC3 receptor agonist PG-990 on lipopolysaccharide activated chondrocytes. Eur. J. Pharm., 2020, 872

[171]

Su W et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight, 2020, 5: e135446

[172]

Cui Z et al. Endothelial PDGF-BB/PDGFR-beta signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Res., 2022, 10: 58

[173]

Opolka A, Straub RH, Pasoldt A, Grifka J, Grassel S. Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. Arthritis Rheum., 2012, 64: 729-739

[174]

Lorenz J et al. Norepinephrine modulates osteoarthritic chondrocyte metabolism and inflammatory responses. Osteoarthr. Cartil., 2016, 24: 325-334

[175]

Hwang HS, Lee MH, Go DJ, Kim HA. Norepinephrine modulates IL-1beta-induced catabolic response of human chondrocytes. BMC Musculoskelet. Disord., 2021, 22

[176]

El Bagdadi K, Zaucke F, Meurer A, Straub RH, Jenei-Lanzl Z. Norepinephrine inhibits synovial adipose stem cell chondrogenesis via alpha2a-adrenoceptor-mediated ERK1/2 activation. Int. J. Mol. Sci., 2019, 20: 3127

[177]

Perez-Garcia S et al. Proteomic analysis of synovial fibroblasts and articular chondrocytes co-cultures reveals valuable VIP-modulated inflammatory and degradative proteins in osteoarthritis. Int. J. Mol. Sci., 2021, 22: 6441

[178]

Liang Y et al. Vasoactive intestinal peptide alleviates osteoarthritis effectively via inhibiting NF-kappaB signaling pathway. J. Biomed. Sci., 2018, 25: 25

[179]

Perez-Garcia S et al. VIP and CRF reduce ADAMTS expression and function in osteoarthritis synovial fibroblasts. J. Cell Mol. Med., 2016, 20: 678-687

[180]

Wang L et al. Levels of neuropeptide Y in synovial fluid relate to pain in patients with knee osteoarthritis. BMC Musculoskelet. Disord., 2014, 15

[181]

Ferreira-Gomes J, Adaes S, Sousa RM, Mendonca M, Castro-Lopes JM. Dose-dependent expression of neuronal injury markers during experimental osteoarthritis induced by monoiodoacetate in the rat. Mol. Pain., 2012, 8

[182]

Kang X et al. Neuropeptide Y acts directly on cartilage homeostasis and exacerbates progression of osteoarthritis through NPY2R. J. Bone Min. Res., 2020, 35: 1375-1384

[183]

Hori A, Nishida T, Takashiba S, Kubota S, Takigawa M. Regulatory mechanism of CCN2 production by serotonin (5-HT) via 5-HT2A and 5-HT2B receptors in chondrocytes. PLoS One, 2017, 12: e0188014

[184]

Stratz C, Anakwue J, Bhatia H, Pitz S, Fiebich BL. Anti-inflammatory effects of 5-HT3 receptor antagonists in interleukin-1beta stimulated primary human chondrocytes. Int. Immunopharmacol., 2014, 22: 160-166

Funding

National Natural Science Foundation of China (National Science Foundation of China)(82072432)

AI Summary AI Mindmap
PDF

275

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/