Sorafenib inhibits ossification of the posterior longitudinal ligament by blocking LOXL2-mediated vascularization

Longqing Wang1, Wenhao Jiang2, Siyuan Zhao3, Dong Xie4, Qing Chen1, Qi Zhao1, Hao Wu1, Jian Luo2, Lili Yang1

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 24. DOI: 10.1038/s41413-024-00327-7

Sorafenib inhibits ossification of the posterior longitudinal ligament by blocking LOXL2-mediated vascularization

  • Longqing Wang1, Wenhao Jiang2, Siyuan Zhao3, Dong Xie4, Qing Chen1, Qi Zhao1, Hao Wu1, Jian Luo2, Lili Yang1
Author information +
History +

Abstract

Ossification of the Posterior Longitudinal Ligament (OPLL) is a degenerative hyperostosis disease characterized by the transformation of the soft and elastic vertebral ligament into bone, resulting in limited spinal mobility and nerve compression. Employing both bulk and single-cell RNA sequencing, we elucidate the molecular characteristics, cellular components, and their evolution during the OPLL process at a single-cell resolution, and validate these findings in clinical samples. This study also uncovers the capability of ligament stem cells to exhibit endothelial cell-like phenotypes in vitro and in vivo. Notably, our study identifies LOXL2 as a key regulator in this process. Through gain-and loss-of-function studies, we elucidate the role of LOXL2 in the endothelial-like differentiation of ligament cells. It acts via the HIF1A pathway, promoting the secretion of downstream VEGFA and PDGF-BB. This function is not related to the enzymatic activity of LOXL2. Furthermore, we identify sorafenib, a broad-spectrum tyrosine kinase inhibitor, as an effective suppressor of LOXL2-mediated vascular morphogenesis. By disrupting the coupling between vascularization and osteogenesis, sorafenib demonstrates significant inhibition of OPLL progression in both BMP-induced and enpp1 deficiency-induced animal models while having no discernible effect on normal bone mass. These findings underscore the potential of sorafenib as a therapeutic intervention for OPLL.

Cite this article

Download citation ▾
Longqing Wang, Wenhao Jiang, Siyuan Zhao, Dong Xie, Qing Chen, Qi Zhao, Hao Wu, Jian Luo, Lili Yang. Sorafenib inhibits ossification of the posterior longitudinal ligament by blocking LOXL2-mediated vascularization. Bone Research, 2024, 12(0): 24 https://doi.org/10.1038/s41413-024-00327-7

References

1. Avila, M. J.et al.Posterior longitudinal ligament resection or preservation in anterior cervical decompression surgery. J. Clin. Neurosci. 22, 1088-1090 (2015).
2. Kato, S.et al. Novel surgical technique for ossification of posterior longitudinal ligament in the thoracic spine. J. Neurosurg. Spine 17, 525-529 (2012).
3. Liu, N.et al. MicroRNA-181 regulates the development of Ossification of Posterior longitudinal ligament via Epigenetic Modulation by targeting PBX1. Theranostics 10, 7492-7509 (2020).
4. Yan, C.et al.Anterior controllable anti-displacement and fusion surgery for the treatment of extensive cervico-thoracic ossification of posterior longitudinal ligament with severe myelopathy: case report and literature review. Br. J. Neurosurg. 37, 364-369 (2023).
5. Liao, X.et al. Prevalence of ossification of posterior longitudinal ligament in patients with degenerative cervical myelopathy: cervical spine 3D CT observations in7210 cases. Spine 45, 1320-1328 (2020).
6. Matsunaga, S. & Sakou, T. Ossification of the posterior longitudinal ligament of the cervical spine: etiology and natural history. Spine 37, E309-E314 (2012).
7. Tachibana, N.et al.RSPO2 defines a distinct undifferentiated progenitor in the tendon/ligament and suppresses ectopic ossification. Sci. Adv. 8, eabn2138 (2022).
8. Sato, R.et al. Ossification of the posterior longitudinal ligament of the cervical spine: histopathological findings around the calcification and ossification front. J. Neurosurg. Spine 7, 174-183 (2007).
9. Nam, D. C.et al.Molecular pathophysiology of ossification of the posterior longitudinal ligament (OPLL). Biomol. Ther. 27, 342-348 (2019).
10. Xu, C.et al.Small extracellular vesicle-mediated miR-320e transmission promotes osteogenesis in OPLL by targeting TAK1. Nat. Commun. 13, 2467(2022).
11. Zhang, L.et al.Role of resident stem cells in vessel formation and arteriosclerosis. Circ. Res. 122, 1608-1624 (2018).
12. Apte, R. S., Chen, D. S. & Ferrara, N. VEGF in signaling and disease: beyond discovery and development. Cell 176, 1248-1264 (2019).
13. Golpanian, S.et al.Rebuilding the damaged heart: mesenchymal stem cells, cellbased therapy, and engineered heart tissue. Physiol. Rev. 96, 1127-1168 (2016).
14. Jung, E.et al.The JNK-EGR1 signaling axis promotes TNF-alpha-induced endothelial differentiation of human mesenchymal stem cells via VEGFR2 expression. Cell Death Differ. 30, 356-368 (2023).
15. Wei, S. T.et al.Atypical chemokine receptor ACKR3/CXCR7 controls postnatal vasculogenesis and arterial specification by mesenchymal stem cells via Notch signaling. Cell Death Dis. 11, 307(2020).
16. Chong, J. J.et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9, 527-540 (2011).
17. Chen, W.et al. Lysyl oxidase (LOX) family members: rationale and their potential as therapeutic targets for liver fibrosis. Hepatology 72, 729-741 (2020).
18. Vallet S. D.& Ricard-Blum, S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 63, 349-364 (2019).
19. Bignon, M.et al. Lysyl oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen assembly in the endothelial basement membrane. Blood 118, 3979-3989 (2011).
20. Umana-Diaz, C. et al. Scavenger receptor cysteine-rich domains of lysyl oxidaselike2 regulate endothelial ECM and angiogenesis through non-catalytic scaffolding mechanisms. Matrix Biol. 88, 33-52 (2020).
21. Wang, M.et al.HIF-1alpha promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. J. Exp. Clin. Cancer Res. 36, 60(2017).
22. Liburkin-Dan, T., Toledano, S., & Neufeld, G. Lysyl oxidase family enzymes and their role in tumor progression. Int. J. Mol. Sci. 23, 6249(2022).
23. Ye, M.et al.Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy. Pharmacol. Ther. 215, 107633(2020).
24. Chien, J. W.et al.Serum lysyl oxidase-like 2 levels and idiopathic pulmonary fibrosis disease progression. Eur. Respir. J. 43, 1430-1438 (2014).
25. Cosgrove, D.et al.Lysyl oxidase like-2 contributes to renal fibrosis in Col4alpha3/ Alport mice. Kidney Int. 94, 303-314 (2018).
26. Neumann, P.et al.The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat. Commun. 9, 237(2018).
27. Millanes-Romero, A.et al. Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition. Mol. Cell 52, 746-757 (2013).
28. Matsuoka, T.et al. Long-term results of the anterior floating method for cervical myelopathy caused by ossification of the posterior longitudinal ligament. Spine 26, 241-248 (2001).
29. Barreto, F. S.et al. Less is more: five-item neck disability index to assess chronic neck pain patients in Brazil. Spine 46, E688-E693 (2021).
30. Ortega, N., Behonick, D. J.& Werb, Z. Matrix remodeling during endochondral ossification. Trends Cell Biol. 14, 86-93 (2004).
31. Eck, S. M.et al.Matrix metalloproteinase-1 promotes breast cancer angiogenesis and osteolysis in a novel in vivo model. Breast Cancer Res. Treat. 116, 79-90 (2009).
32. Prein C.& Beier, F. ECM signaling in cartilage development and endochondral ossification. Curr. Top Dev. Biol. 133, 25-47 (2019).
33. Epstein N.Ossification of the cervical posterior longitudinal ligament: a review. Neurosurg. Focus 13, ECP1 (2002).
34. Epstein N.Diagnosis and surgical management of cervical ossification of the posterior longitudinal ligament. Spine J. 2, 436-449 (2002).
35. Cai, Z.et al.Aberrantly expressed lncRNAs and mRNAs of osteogenically differentiated mesenchymal stem cells in ossification of the posterior longitudinal ligament. Front. Genet. 11, 896(2020).
36. Gan, Y.et al.Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 9, 37(2021).
37. Chen, Y.et al. Single-cell RNA landscape of the osteoimmunology microenvironment in periodontitis. Theranostics 12, 1074-1096 (2022).
38. Kang, K. T., Allen, P. & Bischoff, J. Bioengineered human vascular networks transplanted into secondary mice reconnect with the host vasculature and reestablish perfusion. Blood 118, 6718-6721 (2011).
39. Nowak-Sliwinska, P.et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21, 425-532 (2018).
40. Uchida, K.et al.Initiation and progression of ossification of the posterior longitudinal ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy). Eur. Spine J. 21, 149-155 (2012).
41. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009-1017 (2010).
42. Stegen, S.et al. HIF-1alpha metabolically controls collagen synthesis and modification in chondrocytes. Nature 565, 511-515 (2019).
43. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294-309 (2010).
44. Lugassy, J.et al.The enzymatic activity of lysyl oxidas-like-2 (LOXL2) is not required for LOXL2-induced inhibition of keratinocyte differentiation. J. Biol. Chem. 287, 3541-3549 (2012).
45. Fan, Z.et al.LOXL2 upregulates hypoxia-inducible factor-1alpha signaling through Snail-FBP1 axis in hepatocellular carcinoma cells. Oncol. Rep. 43, 1641-1649 (2020).
46. Wilhelm, S. M.et al.BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099-7109 (2004).
47. Cai, Z.et al.Enhanced osteogenic differentiation of human bone marrow mesenchymal stem cells in ossification of the posterior longitudinal ligament through activation of the BMP2-Smad1/5/8 pathway. Stem Cells Dev. 29, 1567-1576 (2020).
48. Okawa, A.et al.Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat. Genet. 19, 271-273 (1998).
49. Yan, L.et al.The pathogenesis of ossification of the posterior longitudinal ligament. Aging Dis. 8, 570-582 (2017).
50. Sun, X. F.et al.Consensus statement on diagnosis and treatment of cervical ossification of posterior longitudinal ligament from Asia Pacific Spine Society (APSS) 2020. J. Orthop. Surg. 28, 2309499020975213(2020).
51. Hollenberg A. M.& Mesfin, A. Ossification of the posterior longitudinal ligament in North American patients: does presentation with spinal cord injury matter? World Neurosurg. 143, e581-e589 (2020).
52. Xu, P.et al.Posterior decompression and fusion versus laminoplasty for cervical ossification of posterior longitudinal ligament: a systematic review and metaanalysis. Neurosurg. Rev. 44, 1457-1469 (2021).
53. Ramos M. R.D. et al. Risk factors for surgical complications in the management of ossification of the posterior longitudinal ligament. Spine J. 21, 1176-1184 (2021).
54. Lee, J. J.et al.Effect of posterior instrumented fusion on three-dimensional volumetric growth of cervical ossification of the posterior longitudinal ligament: a multiple regression analysis. Spine J. 18, 1779-1786 (2018).
55. Yao, Q.et al.Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 8, 56(2023).
56. Strumberg, D.et al.Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J. Clin. Oncol. 23, 965-972 (2005).
57. Awada, A.et al. Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br. J. Cancer 92, 1855-1861 (2005).
58. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323-328 (2014).
59. Peng, Y.et al. Type H blood vessels in bone modeling and remodeling. Theranostics 10, 426-436 (2020).
60. Ichikawa, N.et al. Coagulation, vascular morphology,vasculogenesis in spinal ligament ossification model mice. Spine 46, E802-E809 (2021).
61. Koshizuka, Y.et al.Nucleotide pyrophosphatase gene polymorphism associated with ossification of the posterior longitudinal ligament of the spine. J. Bone Miner. Res. 17, 138-144 (2002).
62. Nakamura, I.et al.Association of the human NPPS gene with ossification of the posterior longitudinal ligament of the spine (OPLL). Hum. Genet. 104, 492-497 (1999).
63. Tang, Y.et al.Exosomal miR-140-5p inhibits osteogenesis by targeting IGF1R and regulating the mTOR pathway in ossification of the posterior longitudinal ligament. J. Nanobiotechnol. 20, 452(2022).
64. Kawaguchi, Y.et al.Serum biomarkers in patients with ossification of the posterior longitudinal ligament (OPLL): inflammation in OPLL. PLoS One 12, e0174881 (2017).
65. Cao, J.et al.Reassessing endothelial-to-mesenchymal transition in mouse bone marrow: insights from lineage tracing models. Nat. Commun. 14, 8461(2023).
Funding
Jian Luo (jluo@tongji.edu.cn) or Lili Yang (yangll@smmu.edu.cn)

Accesses

Citations

Detail

Sections
Recommended

/