Cell membrane vesicles derived from hBMSCs and hUVECs enhance bone regeneration

Dandan Wang1, Yaru Guo2, Boon Chin Heng2, Xuehui Zhang3, Yan Wei2, Ying He2, Mingming Xu2, Bin Xia1, Xuliang Deng2

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 23. DOI: 10.1038/s41413-024-00325-9
ARTICLE

Cell membrane vesicles derived from hBMSCs and hUVECs enhance bone regeneration

  • Dandan Wang1, Yaru Guo2, Boon Chin Heng2, Xuehui Zhang3, Yan Wei2, Ying He2, Mingming Xu2, Bin Xia1, Xuliang Deng2
Author information +
History +

Abstract

Bone tissue renewal can be enhanced through co-transplantation of bone mesenchymal stem cells (BMSCs) and vascular endothelial cells (ECs). However, there are apparent limitations in stem cell-based therapy which hinder its clinic translation. Hence, we investigated the potential of alternative stem cell substitutes for facilitating bone regeneration. In this study, we successfully prepared cell membrane vesicles (CMVs) from BMSCs and ECs. The results showed that BMSC-derived cell membrane vesicles (BMSC-CMVs) possessed membrane receptors involved in juxtacrine signaling and growth factors derived from their parental cells. EC-derived cell membrane vesicles (EC-CMVs) also contained BMP2 and VEGF derived from their parental cells. BMSC-CMVs enhanced tube formation and migration ability of hUVECs, while EC-CMVs promoted the osteogenic differentiation of hBMSCs in vitro. Using a rat skull defect model, we found that co-transplantation of BMSC-CMVs and EC-CMVs could stimulate angiogenesis and bone formation in vivo. Therefore, our research might provide an innovative and feasible approach for cell-free therapy in bone tissue regeneration.

Cite this article

Download citation ▾
Dandan Wang, Yaru Guo, Boon Chin Heng, Xuehui Zhang, Yan Wei, Ying He, Mingming Xu, Bin Xia, Xuliang Deng. Cell membrane vesicles derived from hBMSCs and hUVECs enhance bone regeneration. Bone Research, 2024, 12(0): 23 https://doi.org/10.1038/s41413-024-00325-9

References

1. Schott, N. G., Friend, N. E.& Stegemann, J. P. Coupling osteogenesis and vasculogenesis in engineered orthopedic tissues. Tissue Eng. B Rev. 27, 199-214 (2021).
2. Eshkar-Oren, I.et al. The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 136, 1263-1272 (2009).
3. Maes, C.et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329-344 (2010).
4. Bolander, J.et al.Healing of a large long-bone defect through serum-free in vitro priming of human periosteum-derived cells. Stem Cell Rep. 8, 758-772 (2017).
5. Queiroz, A.et al. Therapeutic potential of periodontal ligament stem cells. World J. Stem Cells 13, 605-618 (2021).
6. Bayat, H.et al.Osteogenic differentiation of follicular stem cells on nano-Saghez scaffold containing BMP2. J. Orthop. Surg. Res. 14, 442(2019).
7. Einhorn T. A.& Gerstenfeld, L. C. Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 11, 45-54 (2015).
8. Bruder, S. P.et al.Bone regeneration by implantation of purified, cultureexpanded human mesenchymal stem cells. J. Orthop. Res. 16, 155-162 (1998).
9. Liu, Y.et al. Vasculogenic and osteogenesis-enhancing potential of human umbilical cord blood endothelial colony-forming cells. Stem Cells 30, 1911-1924 (2012).
10. Fiedler J., Brill C., Blum W. F.& Brenner, R. E. IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem. Biophys. Res. Commun. 345, 1177-1183 (2006).
11. Liu, Y., Chan, J. K.& Teoh, S. H. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. J. Tissue Eng. Regen. Med. 9, 85-105 (2015).
12. Lee H. Y.& Hong, I. S. Double-edged sword of mesenchymal stem cells: cancerpromoting versus therapeutic potential. Cancer Sci. 108, 1939-1946 (2017).
13. Herberts, C. A., Kwa, M. S.& Hermsen, H. P. Risk factors in the development of stem cell therapy. J. Transl. Med. 9, 29(2011).
14. Kolios, G. & Moodley, Y. Introduction to stem cells and regenerative medicine. Respiration 85, 3-10 (2013).
15. Terrovitis, J. V., Smith, R. R.& Marbán, E. Assessment and optimization of cell engraftment after transplantation into the heart. Circ. Res. 106, 479-494 (2010).
16. Phinney, D. G. & Pittenger, M. F. Concise review: MSC-derived exosomes for cellfree therapy. Stem Cells 35, 851-858 (2017).
17. Pick, H.et al.Investigating cellular signaling reactions in single attoliter vesicles. J. Am. Chem. Soc. 127, 2908-2912 (2005).
18. Wang, D.et al.Cell membrane vesicles with enriched CXCR4 display enhances their targeted delivery as drug carriers to inflammatory sites. Adv. Sci. 8, e2101562(2021).
19. Gomzikova, M. O.et al.Immunosuppressive properties of cytochalasin B-induced membrane vesicles of mesenchymal stem cells: comparing with extracellular vesicles derived from mesenchymal stem cells. Sci. Rep-Uk 10, 10740 (2020).
20. Peng, L. H.et al.Cell membrane capsules for encapsulation of chemotherapeutic and cancer cell targeting in vivo. Acs Appl. Mater. Inter. 7, 18628-18637 (2015).
21. Schoenenberger C. A., Bischler N., Fahrenkrog B.& Aebi, U. Actin's propensity for dynamic filament patterning. FEBS Lett. 529, 27-33 (2002).
22. Gilazieva, Z.et al.Comparative analysis of natural and cytochalasin B-induced membrane vesicles from tumor cells and mesenchymal stem cells. Curr. Issues Mol. Biol. 44, 5363-5378 (2022).
23. Chulpanova, D. S.et al.Cytochalasin B-induced membrane vesicles from TRAILoverexpressing mesenchymal stem cells induce extrinsic pathway of apoptosis in breast cancer mouse model. Curr. Issues Mol. Biol. 45, 571-592 (2023).
24. Cao, C.et al. Bidirectional juxtacrine ephrinB2/Ephs signaling promotes angiogenesis of ECs and maintains self-renewal of MSCs. Biomaterials 172, 1-13 (2018).
25. Salomon, C.et al.Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One 8, e68451 (2013).
26. Bian, S.et al.Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J. Mol. Med. 92, 387-397 (2014).
27. Zhang, L.et al.Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res. Ther. 11, 38(2020).
28. Peng, L. H.et al. Cell membrane capsules for encapsulation of chemotherapeutic and cancer cell targeting in vivo. ACS Appl. Mater. Interfaces 7, 18628-18637 (2015).
29. Mao, Z.et al.Cells as factories for humanized encapsulation. Nano Lett. 11, 2152-2156 (2011).
30. Gomzikova M., Kletukhina S., Kurbangaleeva S.& Rizvanov, A. Evaluation of cytochalasin B-induced membrane vesicles fusion specificity with target cells. BioMed Res. Int. 2018, 7053623(2018).
31. Rüster, B.et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108, 3938-3944 (2006).
32. Ramasamy S. K., Kusumbe A. P., Wang, L. & Adams, R. H. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507, 376-380 (2014).
33. Diomede, F.et al.Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int. J. Mol. Sci. 21, 3242(2020).
34. Gomzikova, M. O.et al.Immunosuppressive properties of cytochalasin B-induced membrane vesicles of mesenchymal stem cells: comparing with extracellular vesicles derived from mesenchymal stem cells. Sci. Rep. 10, 10740(2020).
35. Martens S.& McMahon, H. T. Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 9, 543-556 (2008).
36. Zhidkova, O. V., Andreeva, E. R.& Buravkova, L. B. Endothelial cells modulate differentiation potential and mobility of mesenchymal stromal cells. Bull. Exp. Biol. Med. 165, 127-131 (2018).
37. Zhang, X.et al. Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment. ACS Nano 10, 7279-7286 (2016).
Funding
Bin Xia (xiabin@pkuss.bjmu.edu.cn) or Xuliang Deng (kqdengxuliang@bjmu.edu.cn)

Accesses

Citations

Detail

Sections
Recommended

/