Kdm6a-CNN1 axis orchestrates epigenetic control of trauma-induced spinal cord microvascular endothelial cell senescence to balance neuroinflammation for improved neurological repair

Chengjun Li1,2,3, Tian Qin2,3,4, Jinyun Zhao2,3,4, Yuxin Jin2,3,4, Yiming Qin2,3,4, Rundong He2,3,4, Tianding Wu2,3,4, Chunyue Duan2,3,4, Liyuan Jiang2,3,4, Feifei Yuan2,3,4, Hongbin Lu1,2,3, Yong Cao2,3,4, Jianzhong Hu2,3,4

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 19. DOI: 10.1038/s41413-024-00323-x
ARTICLE

Kdm6a-CNN1 axis orchestrates epigenetic control of trauma-induced spinal cord microvascular endothelial cell senescence to balance neuroinflammation for improved neurological repair

  • Chengjun Li1,2,3, Tian Qin2,3,4, Jinyun Zhao2,3,4, Yuxin Jin2,3,4, Yiming Qin2,3,4, Rundong He2,3,4, Tianding Wu2,3,4, Chunyue Duan2,3,4, Liyuan Jiang2,3,4, Feifei Yuan2,3,4, Hongbin Lu1,2,3, Yong Cao2,3,4, Jianzhong Hu2,3,4
Author information +
History +

Abstract

Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors. Despite extensive investigations into vascular senescence associated with aging and degenerative diseases, the molecular mechanisms governing microvascular endothelial cell senescence induced by traumatic stress, particularly its involvement in senescence-induced inflammation, remain insufficiently elucidated. In this study, we present a comprehensive demonstration and characterization of microvascular endothelial cell senescence induced by spinal cord injury (SCI). Lysine demethylase 6A (Kdm6a), commonly known as UTX, emerges as a crucial regulator of cell senescence in injured spinal cord microvascular endothelial cells (SCMECs). Upregulation of UTX induces senescence in SCMECs, leading to an amplified release of proinflammatory factors, specifically the senescence-associated secretory phenotype (SASP) components, thereby modulating the inflammatory microenvironment. Conversely, the deletion of UTX in endothelial cells shields SCMECs against senescence, mitigates the release of proinflammatory SASP factors, and promotes neurological functional recovery after SCI. UTX forms an epigenetic regulatory axis by binding to calponin 1 (CNN1), orchestrating trauma-induced SCMECs senescence and SASP secretion, thereby influencing neuroinflammation and neurological functional repair. Furthermore, local delivery of a senolytic drug reduces senescent SCMECs and suppresses proinflammatory SASP secretion, reinstating a local regenerative microenvironment and enhancing functional repair after SCI. In conclusion, targeting the UTX-CNN1 epigenetic axis to prevent trauma-induced SCMECs senescence holds the potential to inhibit SASP secretion, alleviate neuroinflammation, and provide a novel treatment strategy for SCI repair.

Cite this article

Download citation ▾
Chengjun Li, Tian Qin, Jinyun Zhao, Yuxin Jin, Yiming Qin, Rundong He, Tianding Wu, Chunyue Duan, Liyuan Jiang, Feifei Yuan, Hongbin Lu, Yong Cao, Jianzhong Hu. Kdm6a-CNN1 axis orchestrates epigenetic control of trauma-induced spinal cord microvascular endothelial cell senescence to balance neuroinflammation for improved neurological repair. Bone Research, 2024, 12(0): 19 https://doi.org/10.1038/s41413-024-00323-x

References

1. Chen, Y., He, Y.& DeVivo, M. J. Changing demographics and injury profile of new traumatic spinal cord injuries in the United States, 1972-2014. Arch. Phys. Med. Rehabil. 97, 1610-1619 (2016).
2. Tian, T., Zhang, S. & Yang, M. Recent progress and challenges in the treatment of spinal cord injury. Protein Cell 14, 635-652 (2023).
3. Li, W.et al.Ferroptosis inhibition protects vascular endothelial cells and maintains integrity of the blood-spinal cord barrier after spinal cord injury. Neural. Regen. Res. 18, 2474-2481 (2023).
4. Li, X.et al.Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 8, 239(2023).
5. Yu, X., Ji, C.& Shao, A. Neurovascular unit dysfunction and neurodegenerative disorders. Front. Neurosci. 14, 334(2020).
6. Schaeffer S.& Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 24, 1198-1209 (2021).
7. Yao, L.-L.et al.Astrocytic neogenin/netrin-1 pathway promotes blood vessel homeostasis and function in mouse cortex. J. Clin. Investig. 130, 6490-6509 (2020).
8. Bloom S. I., Islam M. T., Lesniewski L. A.& Donato, A. J. Mechanisms and consequences of endothelial cell senescence. Nat. Rev. Cardiol. 20, 38-51 (2023).
9. Tweedie, D.et al.Time-dependent cytokine and chemokine changes in mouse cerebral cortex following a mild traumatic brain injury. Elife 9, e55827 (2020).
10. Birch J.& Gil, J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565-1576 (2020).
11. Khosla S., Farr J. N., Tchkonia T.& Kirkland, J. L. The role of cellular senescence in ageing and endocrine disease. Nat. Rev. Endocrinol. 16, 263-275 (2020).
12. Liu, H., Zhao, H.& Sun, Y. Tumor microenvironment and cellular senescence: understanding therapeutic resistance and harnessing strategies. Semin. Cancer Biol. 86, 769-781 (2022).
13. Zhang, L.et al.Cellular senescence: a key therapeutic target in aging and diseases. J. Clin. Investig. 132, e158450(2022).
14. Soto-Palma, C., Niedernhofer, L. J., Faulk, C. D. & Dong, X. Epigenetics, DNA damage, and aging. J. Clin. Investig. 132, e158446(2022).
15. Kang L., Zhang H., Jia C., Zhang R.& Shen, C. Epigenetic modifications of inflammation in intervertebral disc degeneration. Ageing Res. Rev. 87, 101902(2023).
16. Kwiatkowska, K. M.et al.Heterogeneity of cellular senescence: cell type-specific and senescence stimulus-dependent epigenetic alterations. Cells 12, 927 (2023).
17. Medina Rangel, P. X. et al. Cell cycle and senescence regulation by podocyte histone deacetylase 1 and 2. J. Am. Soc. Nephrol. 34, 433-450 (2023).
18. Su, X.et al.Epigenetic therapy attenuates oxidative stress in BMSCs during ageing. J. Cell Mol. Med. 26, 375-384 (2022).
19. Abu-Hanna, J. et al. Therapeutic potential of inhibiting histone 3 lysine 27 demethylases: a review of the literature. Clin. Epigenetics 14, 98 (2022).
20. Tran, N., Broun, A.& Ge, K. Lysine demethylase KDM6A in differentiation, development, and cancer. Mol. Cell Biol. 40, e00341-20 (2020).
21. Sera, Y.et al. UTX maintains the functional integrity of the murine hematopoietic system by globally regulating aging-associated genes. Blood 137, 908-922 (2021).
22. Paramos-de-Carvalho, D.et al. Targeting senescent cells improves functional recovery after spinal cord injury. Cell Rep. 36, 109334(2021).
23. Power H., Valtchev P., Dehghani F.& Schindeler, A. Strategies for senolytic drug discovery. Aging Cell 22, e13948 (2023).
24. Aratani, S. & Nakanishi, M. Recent advances in senolysis for age-related diseases. Physiology 38, 205-216 (2023).
25. Kirkland J. L.& Tchkonia, T. Senolytic drugs: from discovery to translation. J. Intern. Med. 288, 518-536 (2020).
26. Ogrodnik, M.et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1061-1077.e8 (2019).
27. Ji, S.et al.Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct. Target. Ther. 8, 116(2023).
28. Zipser, C. M.et al.Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol. 21, 659-670 (2022).
29. Wilkinson H. N.& Hardman, M. J. Cellular senescence in acute and chronic wound repair. Cold Spring Harb. Perspect. Biol. 14, a041221(2022).
30. Ebert T., Tran N., Schurgers L., Stenvinkel P.& Shiels, P. G. Ageing—oxidative stress, PTMs and disease. Mol-. Asp. Med. 86, 101099(2022).
31. Huang J., Meng P., Wang C., Zhang, Y. & Zhou, L. The relevance of organelle interactions in cellular senescence. Theranostics 12,2445-2464 (2022).
32. Gasek N. S., Kuchel G. A., Kirkland, J. L. & Xu, M. Strategies for targeting senescent cells in human disease. Nat. Aging 1, 870-879 (2021).
33. Gal, H., Majewska, J.& Krizhanovsky, V. The intricate nature of senescence in development and cell plasticity. Semin. Cancer Biol. 87, 214-219 (2022).
34. Shvedova M.,Samdavid Thanapaul, R. J. R., Thompson, E. L., Niedernhofer, L. J. & Roh, D. S. Cellular senescence in aging, tissue repair, and regeneration. Plast. Reconstr. Surg. 150, 4S-11S (2022).
35. Young, L. V.et al.Muscle injury induces a transient senescence-like state that is required for myofiber growth during muscle regeneration. FASEB J. 36, e22587(2022).
36. Schwab, N., Leung, E.& Hazrati, L.-N. Cellular senescence in traumatic brain injury: evidence and perspectives. Front. Aging Neurosci. 13, 742632(2021).
37. Martin-Ruiz, C. et al. Senescence and inflammatory markers for predicting clinical progression in Parkinson's disease: the ICICLE-PD study. J. Parkinsons Dis. 10, 193-206 (2020).
38. Chung Y.-P., Weng T.-I., Chan D.-C., Yang R.-S.& Liu, S.-H. Low-dose tributyltin triggers human chondrocyte senescence and mouse articular cartilage aging. Arch. Toxicol. 97, 547-559 (2023).
39. Li, X.et al.Convergent transcriptomic and genomic evidence supporting a dysregulation of CXCL16 and CCL5 in Alzheimer's disease. Alzheimers Res. Ther. 15, 17(2023).
40. Calcinotto, A.et al.Cellular senescence: aging, cancer, and injury. Physiol. Rev. 99, 1047-1078 (2019).
41. Ermolaeva M., Neri F., Ori A.& Rudolph, K. L. Cellular and epigenetic drivers of stem cell ageing. Nat. Rev. Mol. Cell Biol. 19, 594-610 (2018).
42. Ding Q., Shao C., Rose P.& Zhu, Y. Z. Epigenetics and vascular senescencepotential new therapeutic targets? Front. Pharmacol. 11, 535395(2020).
43. Paluvai H.,Di Giorgio, E. & Brancolini, C. The histone code of senescence. Cells 9, 466 (2020).
44. Van der Meulen, J., Speleman, F. & Van Vlierberghe, P. The H3K27me3 demethylase UTX in normal development and disease. Epigenetics 9, 658-668 (2014).
45. Lian, W.-S.et al.Histone H3K27 demethylase UTX compromises articular chondrocyte anabolism and aggravates osteoarthritic degeneration. Cell Death Dis. 13, 538(2022).
46. Perrigue, P. M.et al.Cancer stem cell-inducing media activates senescence reprogramming in fibroblasts. Cancers 12, 1745 (2020).
47. Chakraborty, A. A.et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science 363, 1217-1222 (2019).
48. Yin, L.-M., Schnoor, M.& Jun, C.-D. Structural characteristics, binding partners and related diseases of the Calponin homology (CH) domain. Front. Cell Dev. Biol. 8, 342(2020).
49. Liu, R. & Jin, J. P. Calponin isoforms CNN1, CNN2 and CNN3: regulators for actin cytoskeleton functions in smooth muscle and non-muscle cells. Gene 585, 143-153 (2016).
50. Blascke de Mello, M. M., Parente, J. M., Schulz, R. & Castro, M. M. Matrix metalloproteinase (MMP)-2 activation by oxidative stress decreases aortic Calponin-1 levels during hypertrophic remodeling in early hypertension. Vascul. Pharmacol. 116, 36-44 (2019).
51. Peng, C.et al. CREG ameliorates embryonic stem cell differentiation into smooth muscle cells by modulation of TGF-β expression. Differentiation 125, 9-17 (2022).
52. Lu, Y.et al.Calponin 1 increases cancer-associated fibroblasts-mediated matrix stiffness to promote chemoresistance in gastric cancer. Matrix Biol. 115, 1-15 (2023).
53. Novais, E. J.et al.Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat. Commun. 12, 5213(2021).
54. Martel, J.et al.Emerging use of senolytics and senomorphics against aging and chronic diseases. Med. Res. Rev. 40, 2114-2131 (2020).
55. Basso, D. M.et al. Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J. Neurotrauma 23, 635-659 (2006).
56. Schlag, M. G., Hopf, R.& Redl, H. Serial recording of sensory, corticomotor, and brainstem-derived motor evoked potentials in the rat. Somatosens. Mot. Res. 18, 106-116 (2001).
Funding
Hongbin Lu (hongbinlu@csu.edu.cn) or Yong Cao (xycaoyong@csu.edu.cn) or Jianzhong Hu (jianzhonghu@csu.edu.cn)

Accesses

Citations

Detail

Sections
Recommended

/