The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair

Heeseog Kang1, Amy L. Strong2, Yuxiao Sun1, Lei Guo3, Conan Juan1, Alec C. Bancroft1, Ji Hae Choi1, Chase A. Pagani1, Aysel A. Fernandes4, Michael Woodard1, Juhoon Lee5, Sowmya Ramesh6, Aaron W. James6, David Hudson4, Kevin N. Dalby5, Lin Xu3, Robert J. Tower1, Benjamin Levi1

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 17. DOI: 10.1038/s41413-024-00320-0

The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair

  • Heeseog Kang1, Amy L. Strong2, Yuxiao Sun1, Lei Guo3, Conan Juan1, Alec C. Bancroft1, Ji Hae Choi1, Chase A. Pagani1, Aysel A. Fernandes4, Michael Woodard1, Juhoon Lee5, Sowmya Ramesh6, Aaron W. James6, David Hudson4, Kevin N. Dalby5, Lin Xu3, Robert J. Tower1, Benjamin Levi1
Author information +
History +

Abstract

While hypoxic signaling has been shown to play a role in many cellular processes, its role in metabolism-linked extracellular matrix (ECM) organization and downstream processes of cell fate after musculoskeletal injury remains to be determined. Heterotopic ossification (HO) is a debilitating condition where abnormal bone formation occurs within extra-skeletal tissues. Hypoxia and hypoxia-inducible factor 1α (HIF-1α) activation have been shown to promote HO. However, the underlying molecular mechanisms by which the HIF-1α pathway in mesenchymal progenitor cells (MPCs) contributes to pathologic bone formation remain to be elucidated. Here, we used a proven mouse injury-induced HO model to investigate the role of HIF-1α on aberrant cell fate. Using single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics analyses of the HO site, we found that collagen ECM organization is the most highly up-regulated biological process in MPCs. Zeugopod mesenchymal cell-specific deletion of Hif1α (Hoxa11-CreERT2; Hif1afl/fl) significantly mitigated HO in vivo. ScRNA-seq analysis of these Hoxa11-CreERT2; Hif1afl/fl mice identified the PLOD2/LOX pathway for collagen cross-linking as downstream of the HIF-1α regulation of HO. Importantly, our scRNA-seq data and mechanistic studies further uncovered that glucose metabolism in MPCs is most highly impacted by HIF-1α deletion. From a translational aspect, a pan-LOX inhibitor significantly decreased HO. A newly screened compound revealed that the inhibition of PLOD2 activity in MPCs significantly decreased osteogenic differentiation and glycolytic metabolism. This suggests that the HIF-1α/PLOD2/LOX axis linked to metabolism regulates HO-forming MPC fate. These results suggest that the HIF-1α/PLOD2/LOX pathway represents a promising strategy to mitigate HO formation.

Cite this article

Download citation ▾
Heeseog Kang, Amy L. Strong, Yuxiao Sun, Lei Guo, Conan Juan, Alec C. Bancroft, Ji Hae Choi, Chase A. Pagani, Aysel A. Fernandes, Michael Woodard, Juhoon Lee, Sowmya Ramesh, Aaron W. James, David Hudson, Kevin N. Dalby, Lin Xu, Robert J. Tower, Benjamin Levi. The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair. Bone Research, 2024, 12(0): 17 https://doi.org/10.1038/s41413-024-00320-0

References

1. Hwang, C. D.et al.Contemporary perspectives on heterotopic ossification. JCI Insight 7, e158996 (2022).
2. Kaplan F. S.& Shore, E. M. Progressive osseous heteroplasia. J. Bone Miner. Res. 15, 2084-2094 (2000).
3. Peterson, J. R.et al.Effects of aging on osteogenic response and heterotopic ossification following burn injury in mice. Stem Cells Dev. 24, 205-213 (2015).
4. Spreadborough P. J., Strong A. L., Mares J., Levi B.& Davis, T. A. Tourniquet use following blast-associated complex lower limb injury and traumatic amputation promotes end organ dysfunction and amplified heterotopic ossification formation. JOSR 17, 422 (2022).
5. Wiesener, M. S.et al.Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 17, 271-273 (2003).
6. Pugh C. W.& Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9, 677-684 (2003).
7. Amarilio, R.et al. HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134, 3917-3928 (2007).
8. Provot, S.et al.Hif-1alpha regulates differentiation of limb bud mesenchyme and joint development. J. Cell Biol. 177, 451-464 (2007).
9. Agarwal, S.et al. Inhibition of Hif1alpha prevents both trauma-induced and genetic heterotopic ossification. Proc. Natl. Acad. Sci. USA 113, E338-E347 (2016).
10. Gilkes D. M., Bajpai S., Chaturvedi P., Wirtz D.& Semenza, G. L. Hypoxiainducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J. Biol. Chem. 288, 10819-10829 (2013).
11. Myllyharju J.& Kivirikko, K. I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33-43 (2004).
12. van der Slot, A. J.et al. Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J. Biol. Chem. 278, 40967-40972 (2003).
13. Vallet S. D.& Ricard-Blum, S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 63, 349-364 (2019).
14. van der Slot, A. J.et al. Elevated formation of pyridinoline cross-links by profibrotic cytokines is associated with enhanced lysyl hydroxylase 2b levels. Biochim. Biophys. Acta1741, 95-102 (2005).
15. Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394-1400 (2008).
16. Huang, Y., Lin, D.& Taniguchi, C. M. Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? Sci. China Life Sci. 60, 1114-1124 (2017).
17. Missiaen, R., Lesner, N. P.& Simon, M. C. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment. EMBO J. 42, e112067(2023).
18. Huber, A. K.et al.Immobilization after injury alters extracellular matrix and stem cell fate. J. Clin. Investig. 130, 5444-5460 (2020).
19. Pagani, C. A.et al.Discoidin domain receptor 2 regulates aberrant mesenchymal lineage cell fate and matrix organization. Sci. Adv. 8, eabq6152 (2022).
20. Peterson, J. R.et al.Direct mouse trauma/burn model of heterotopic ossification. J. Vis. Exp. 102, e52880(2015).
21. Davis A. P., Witte D. P., Hsieh-Li H. M., Potter, S. S. & Capecchi, M. R. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791-795 (1995).
22. Pineault K. M., Song J. Y., Kozloff K. M., Lucas D.& Wellik, D. M. Hox11 expressing regional skeletal stem cells are progenitors for osteoblasts, chondrocytes and adipocytes throughout life. Nat. Commun. 10, 3168(2019).
23. Rux D., Helbig K., Koyama E.& Pacifici, M. Hox11 expression characterizes developing zeugopod synovial joints and is coupled to postnatal articular cartilage morphogenesis into functional zones in mice. Dev. Biol. 477, 49-63 (2021).
24. Pagani, C. A.et al.Novel lineage-tracing system to identify site-specific ectopic bone precursor cells. Stem Cell Rep. 16, 626-640 (2021).
25. Huang, Y. & Kyriakides, T. R. The role of extracellular matrix in the pathophysiology of diabetic wounds. Matrix Biol. 6-7, 100037 (2020).
26. Gilkes, D. M., Semenza, G. L. & Wirtz, D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer 14, 430-439 (2014).
27. Qi Y.& Xu, R. Roles of PLODs in collagen synthesis and cancer progression. Front. Cell Dev. Biol. 6, 66(2018).
28. Tong, Y.et al.The PLOD2/succinate axis regulates the epithelial-mesenchymal plasticity and cancer cell stemness. Proc. Natl. Acad. Sci. USA 120, e2214942120 (2023).
29. Cho, Y.et al.CTRP3 exacerbates tendinopathy by dysregulating tendon stem cell differentiation and altering extracellular matrix composition. Sci. Adv. 7, eabg6069 (2021).
30. Riley G.Tendinopathy-from basic science to treatment. Nat. Clin. Pract. Rheumatol. 4, 82-89 (2008).
31. Gilkes, D. M.et al.Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. 11, 456-466 (2013).
32. Semenza, G. L. The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim. Biophys. Acta1863, 382-391 (2016).
33. Wang, H.et al.Cellular hypoxia promotes heterotopic ossification by amplifying BMP signaling. J. Bone Min. Res. 31, 1652-1665 (2016).
34. Jaakkola, P.et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472 (2001).
35. Ivan, M.et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468 (2001).
36. van der Slot, A. J.et al. Increased formation of pyridinoline cross-links due to higher telopeptide lysyl hydroxylase levels is a general fibrotic phenomenon. Matrix Biol. 23, 251-257 (2004).
37. Ge H., Tian M., Pei Q., Tan F.& Pei, H. Extracellular matrix stiffness: new areas affecting cell metabolism. Front. Oncol. 11, 631991(2021).
38. Papandreou I., Cairns R. A., Fontana L., Lim A. L.& Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197 (2006).
39. Kim J. W., Tchernyshyov I., Semenza G. L.& Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177-185 (2006).
40. Manoharan C., Wilson M. C., Sessions R. B.& Halestrap, A. P. The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity. Mol. Membr. Biol. 23, 486-498 (2006).
41. Tannahill, G. M.et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238-242 (2013).
42. Devkota, A. K.et al.Development of a high-throughput lysyl hydroxylase (LH) assay and identification of small-molecule inhibitors against LH2. SLAS Discov. 24, 484-491 (2019).
43. Lee, J.et al. 1,3-diketone analogs as selective lysyl hydroxylase 2 (LH2) antagonists. ChemRxiv, (2022).
44. Terajima, M.et al.Lysyl hydroxylase 2 mediated collagen post-translational modifications and functional outcomes. Sci. Rep. 12, 14256(2022).
45. Du, W.et al.PLOD2 promotes aerobic glycolysis and cell progression in colorectal cancer by upregulating HK2. Biochem. Cell Biol. 98, 386-395 (2020).
46. Assis-Ribas, T., Forni, M. F., Winnischofer, S. M. B., Sogayar, M. C. & Trombetta- Lima, M. Extracellular matrix dynamics during mesenchymal stem cells differentiation. Dev. Biol. 437, 63-74 (2018).
47. Thaler, R.et al. Differential effects of homocysteine and beta aminopropionitrile on preosteoblastic MC3T3-E1 cells. Bone 46, 703-709 (2010).
48. Winkler, S.et al.The impact of hypoxia on mesenchymal progenitor cells of human skeletal tissue in the pathogenesis of heterotopic ossification. Int. Orthop. 39, 2495-2501 (2015).
49. Olmsted-Davis, E. et al. Hypoxic adipocytes pattern early heterotopic bone formation. Am. J. Pathol. 170, 620-632 (2007).
50. Lin, L.et al.Synergistic inhibition of endochondral bone formation by silencing Hif1α and Runx2 in trauma-induced heterotopic ossification. Mol. Ther. 19, 1426-1432 (2011).
51. Lin L., Shen Q., Xue, T. & Yu, C. Heterotopic ossification induced by Achilles tenotomy via endochondral bone formation: expression of bone and cartilage related genes. Bone 46, 425-431 (2010).
52. Erler, J. T.et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35-44 (2009).
53. Sorkin, M.et al.Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nat. Commun. 11, 722(2020).
54. Brereton, C. J.et al.Pseudohypoxic HIF pathway activation dysregulates collagen structure-function in human lung fibrosis. Elife 11, e69348 (2022).
55. Pfander D., Cramer T., Schipani E.& Johnson, R. S. HIF-1alpha controls extracellular matrix synthesis by epiphyseal chondrocytes. J. Cell Sci. 116, 1819-1826 (2003).
56. Yang, L.et al.Hypoxia enhances IPF mesenchymal progenitor cell fibrogenicity via the lactate/GPR81/HIF1alpha pathway. JCI Insight 8, e163820 (2023).
57. Vogler, M.et al.Hypoxia modulates fibroblastic architecture, adhesion and migration: a role for HIF-1alpha in cofilin regulation and cytoplasmic actin distribution. PLoS One 8, e69128 (2013).
58. Semenza G. L.Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb. Symp. Quant. Biol. 76, 347-353 (2011).
59. Zhao, X.et al.Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis. Nat. Metab. 1, 147-157 (2019).
60. Yang, X.et al.Pyruvate kinase M2 modulates the glycolysis of chondrocyte and extracellular matrix in osteoarthritis. DNA Cell Biol. 37, 271-277 (2018).
61. Sullivan, W. J.et al. Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. Cell 175, 117-132.e121 (2018).
62. Cosset, É.et al. Glut3 addiction is a druggable vulnerability for a molecularly defined subpopulation of glioblastoma. Cancer Cell 32, 856-868.e855 (2017).
63. Bahraoui, S., et al. PLOD2, a key factor for MRL MSC metabolism and chondroprotective properties. bioRxiv (2023).
64. Stegen, S.et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature 565, 511-515 (2019).
65. Li, Q.et al. Lysyl oxidase promotes liver metastasis of gastric cancer via facilitating the reciprocal interactions between tumor cells and cancer associated fibroblasts. EBioMedicine 49, 157-171 (2019).
66. Peterson, J. R.et al. Early detection of burn-induced heterotopic ossification using transcutaneous Raman spectroscopy. Bone 54, 28-34 (2013).
67. Zhou, Y.et al.Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523(2019).
68. Stuart, T.et al. Comprehensive integration of single-cell data. Cell 177, 1888-1902.e1821 (2019).
69. DeVilbiss, A. W.et al. Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues. Elife 10, e61980 (2021).
70. Chen X., Nadiarynkh O., Plotnikov S.& Campagnola, P. J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7, 654-669 (2012).
71. Boudaoud, A.et al.FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat. Protoc. 9, 457-463 (2014).
72. Eyre D.Collagen cross-linking amino acids. Methods Enzymol. 144, 115-139 (1987).
Funding
Benjamin Levi (Benjamin.Levi@UTSouthwestern.edu)

Accesses

Citations

Detail

Sections
Recommended

/