The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 17

PDF
Bone Research ›› 2024, Vol. 12 ›› Issue (0) :17 DOI: 10.1038/s41413-024-00320-0
ARTICLE

The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair

Author information +
History +
PDF

Abstract

While hypoxic signaling has been shown to play a role in many cellular processes, its role in metabolism-linked extracellular matrix (ECM) organization and downstream processes of cell fate after musculoskeletal injury remains to be determined. Heterotopic ossification (HO) is a debilitating condition where abnormal bone formation occurs within extra-skeletal tissues. Hypoxia and hypoxia-inducible factor 1α (HIF-1α) activation have been shown to promote HO. However, the underlying molecular mechanisms by which the HIF-1α pathway in mesenchymal progenitor cells (MPCs) contributes to pathologic bone formation remain to be elucidated. Here, we used a proven mouse injury-induced HO model to investigate the role of HIF-1α on aberrant cell fate. Using single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics analyses of the HO site, we found that collagen ECM organization is the most highly up-regulated biological process in MPCs. Zeugopod mesenchymal cell-specific deletion of Hif1α (Hoxa11-CreERT2; Hif1afl/fl) significantly mitigated HO in vivo. ScRNA-seq analysis of these Hoxa11-CreERT2; Hif1afl/fl mice identified the PLOD2/LOX pathway for collagen cross-linking as downstream of the HIF-1α regulation of HO. Importantly, our scRNA-seq data and mechanistic studies further uncovered that glucose metabolism in MPCs is most highly impacted by HIF-1α deletion. From a translational aspect, a pan-LOX inhibitor significantly decreased HO. A newly screened compound revealed that the inhibition of PLOD2 activity in MPCs significantly decreased osteogenic differentiation and glycolytic metabolism. This suggests that the HIF-1α/PLOD2/LOX axis linked to metabolism regulates HO-forming MPC fate. These results suggest that the HIF-1α/PLOD2/LOX pathway represents a promising strategy to mitigate HO formation.

Cite this article

Download citation ▾
Heeseog Kang, Amy L. Strong, Yuxiao Sun, Lei Guo, Conan Juan, Alec C. Bancroft, Ji Hae Choi, Chase A. Pagani, Aysel A. Fernandes, Michael Woodard, Juhoon Lee, Sowmya Ramesh, Aaron W. James, David Hudson, Kevin N. Dalby, Lin Xu, Robert J. Tower, Benjamin Levi. The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair. Bone Research, 2024, 12(0): 17 DOI:10.1038/s41413-024-00320-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

PDF

507

Accesses

0

Citation

Detail

Sections
Recommended

/