Brain regulates weight bearing bone through PGE2 skeletal interoception: implication of ankle osteoarthritis and pain

Feng Gao1, Qimiao Hu1, Wenwei Chen1,2, Jilong Li1, Cheng Qi1, Yiwen Yan1, Cheng Qian1, Mei Wan1,2, James Ficke1, Junying Zheng1, Xu Cao1,2

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 16. DOI: 10.1038/s41413-024-00316-w

Brain regulates weight bearing bone through PGE2 skeletal interoception: implication of ankle osteoarthritis and pain

  • Feng Gao1, Qimiao Hu1, Wenwei Chen1,2, Jilong Li1, Cheng Qi1, Yiwen Yan1, Cheng Qian1, Mei Wan1,2, James Ficke1, Junying Zheng1, Xu Cao1,2
Author information +
History +

Abstract

Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone prostaglandin E2 (PGE2) concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of cyclooxygenase-2 (COX2) in the osteoblast lineage cells or knockout of receptor 4 (EP4) in sensory nerve blunts bone formation in response to mechanical loading. Moreover, knockout of TrkA in sensory nerve also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces cAMP-response element binding protein (CREB) phosphorylation in the hypothalamic arcuate nucleus (ARC) to inhibit sympathetic tyrosine hydroxylase (TH) expression in the paraventricular nucleus (PVN) for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.

Cite this article

Download citation ▾
Feng Gao, Qimiao Hu, Wenwei Chen, Jilong Li, Cheng Qi, Yiwen Yan, Cheng Qian, Mei Wan, James Ficke, Junying Zheng, Xu Cao. Brain regulates weight bearing bone through PGE2 skeletal interoception: implication of ankle osteoarthritis and pain. Bone Research, 2024, 12(0): 16 https://doi.org/10.1038/s41413-024-00316-w

References

1. Nutman A. P., Bennett V. C., Friend C. R., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535-538 (2016).
2. Moroz L. L.On the independent origins of complex brains and neurons. Brain Behav. Evol. 74, 177-190 (2009).
3. Tosches, M. A.et al. Evolution of pallium, hippocampus,cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360, 881-888 (2018).
4. Hain, D.et al.Molecular diversity and evolution of neuron types in the amniote brain. Science 377, eabp8202 (2022).
5. Tosches M. A.& Laurent, G. Evolution of neuronal identity in the cerebral cortex. Curr. Opin. Neurobiol. 56, 199-208 (2019).
6. Craig A. D.Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13, 500-505 (2003).
7. Lv, X., Gao, F.& Cao, X. Skeletal interoception in bone homeostasis and pain. Cell Metab. 34, 1914-1931 (2022).
8. Chen, W. G.et al.The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci. 44, 3-16 (2021).
9. Chen, H.et al.Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun. 10, 181(2019).
10. Hu, B.et al.Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. J. Clin. Invest. 130, 3483-3498 (2020).
11. Lv, X.et al.Skeleton interoception regulates bone and fat metabolism through hypothalamic neuroendocrine NPY. Elife 10, e70324 (2021).
12. Qiao, W.et al.Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models. Nat. Commun. 13, 535(2022).
13. Doherty, A. H., Ghalambor, C. K. & Donahue, S. W. Evolutionary physiology of bone: bone metabolism in changing environments. Physiology 30, 17-29 (2015).
14. Samelson, E. J.et al.Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol. 7, 34-43 (2019).
15. Thorsen K., Kristoffersson A. O., Lerner U. H.& Lorentzon, R. P. In situ microdialysis in bone tissue. Stimulation of prostaglandin E2 release by weight-bearing mechanical loading. J. Clin. Invest. 98, 2446-2449 (1996).
16. Tang L. Y., Cullen D. M., Yee J. A., Jee W. S.& Kimmel, D. B. Prostaglandin E2 increases the skeletal response to mechanical loading. J. Bone Min. Res. 12, 276-282 (1997).
17. Chow J. W.& Chambers, T. J. Indomethacin has distinct early and late actions on bone formation induced by mechanical stimulation. Am. J. Physiol. 267, E287-292 (1994).
18. Norvell S. M., Ponik S. M., Bowen D. K., Gerard R.& Pavalko, F. M. Fluid shear stress induction of COX-2 protein and prostaglandin release in cultured MC3T3- E1 osteoblasts does not require intact microfilaments or microtubules. J. Appl. Physiol. (1985) 96, 957-966 (2004).
19. Bonewald L. F.The amazing osteocyte. J. Bone Min. Res. 26, 229-238 (2011).
20. Klein-Nulend J., Bakker A. D., Bacabac R. G., Vatsa, A. & Weinbaum, S. Mechanosensation and transduction in osteocytes. Bone 54, 182-190 (2013).
21. Vico L.& Hargens, A. Skeletal changes during and after spaceflight. Nat. Rev. Rheumatol. 14, 229-245 (2018).
22. Rubin, J., Rubin, C. & Jacobs, C. R. Molecular pathways mediating mechanical signaling in bone. Gene 367, 1-16 (2006).
23. Katsumi A., Orr A. W., Tzima E.& Schwartz, M. A. Integrins in mechanotransduction. J. Biol. Chem. 279, 12001-12004 (2004).
24. Nguyen, A. M. & Jacobs, C. R. Emerging role of primary cilia as mechanosensors in osteocytes. Bone 54, 196-204 (2013).
25. Young S. R.,Gerard-O'Riley, R., Kim, J. B. & Pavalko, F. M. Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts. J. Bone Min. Res. 24, 411-424 (2009).
26. Sun, W.et al.The mechanosensitive Piezo1 channel is required for bone formation. Elife 8, e47454 (2019).
27. Zhen, G.et al.Mechanical stress determines the configuration of TGFbeta activation in articular cartilage. Nat. Commun. 12, 1706(2021).
28. Tang, Y.et al.TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757-765 (2009).
29. Xie, H.et al.PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20, 1270-1278 (2014).
30. Xian, L.et al.Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 18, 1095-1101 (2012).
31. Su, W.et al.Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2. Elife 11, e79773 (2022).
32. Ni, S.et al.Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nat. Commun. 10, 5643(2019).
33. Zhu, J.et al.Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis. Elife 9, e57656 (2020).
34. Zhu, S.et al.Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest. 129, 1076-1093 (2018).
35. Krause F.& Anwander, H. Osteochondral lesion of the talus: still a problem? EFORT Open Rev. 7, 337-343 (2022).
36. Goldberg, A. J.et al.Total ankle replacement versus arthrodesis for end-stage ankle osteoarthritis: a randomized controlled trial. Ann. Intern. Med. 175, 1648-1657 (2022).
37. Allegri, M.et al. Mechanisms of low back pain: a guide for diagnosis and therapy. F1000Res 5, F1000 Faculty Rev-1530 (2016).
38. Mueller A. J., Peffers M. J., Proctor C. J.& Clegg, P. D. Systems approaches in osteoarthritis: Identifying routes to novel diagnostic and therapeutic strategies. J. Orthop. Res. 35, 1573-1588 (2017).
39. Foster, N. E.et al. Prevention and treatment of low back pain: evidence, challenges,promising directions. Lancet 391, 2368-2383 (2018).
40. Kodama, Y.et al.Inhibition of bone resorption by pamidronate cannot restore normal gain in cortical bone mass and strength in tail-suspended rapidly growing rats. J. Bone Min. Res. 12, 1058-1067 (1997).
41. Guo, Q.et al.Unloading-induced skeletal interoception alters hypothalamic signaling to promote bone loss and fat metabolism. Adv. Sci. 10, e2305042(2023).
42. Kvetnansky, R., Sabban, E. L.& Palkovits, M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol. Rev. 89, 535-606 (2009).
43. Wang, P.et al. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature 583, 839-844 (2020).
44. Sanchez-Jasso,D. E., Lopez-Guzman, S. F., Bermudez-Cruz, R. M. & Oviedo, N. Novel aspects of cAMP-response element modulator (CREM) role in spermatogenesis and male fertility. Int. J. Mol. Sci. 24, 12558(2023).
45. Ormsby, R. T.et al.Evidence that osteocyte perilacunar remodelling contributes to polyethylene wear particle induced osteolysis. Acta Biomater. 33, 242-251 (2016).
46. Karner, C. M. & Long, F. Glucose metabolism in bone. Bone 115, 2-7 (2018).
47. Lee, N. K.et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456-469 (2007).
48. Kim, S. P.et al.Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight 2, e92704 (2017).
49. Swanson L. W.& Sawchenko, P. E. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 6, 269-324 (1983).
50. Zhang, L.et al. Bidirectional control of parathyroid hormone and bone mass by subfornical organ. Neuron 111, 1914-1932.e1916 (2023).
51. Sun, L.et al. Functions of vasopressin and oxytocin in bone mass regulation. Proc. Natl. Acad. Sci. USA 113, 164-169 (2016).
52. Baribeau D. A.& Anagnostou, E. Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits. Front. Neurosci. 9, 335(2015).
53. Idelevich, A. & Baron, R. Brain to bone: what is the contribution of the brain to skeletal homeostasis? Bone 115, 31-42 (2018).
54. Shi, Y. C.et al.Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab. 17, 236-248 (2013).
55. Zhen, G.et al.Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704-712 (2013).
56. Tu, M.et al.Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis. Bone Res. 7, 29(2019).
57. Sun, Q.et al.Parathyroid hormone attenuates osteoarthritis pain by remodeling subchondral bone in mice. Elife 10, e66532 (2021).
58. Guo, Q.et al.Sympathetic innervation regulates osteocyte-mediated cortical bone resorption during lactation. Adv. Sci. 10, e2207602(2023).
59. International, F.et al.International foot and ankle osteoarthritis consortium review and research agenda for diagnosis, epidemiology, burden, outcome assessment and treatment. Osteoarthr. Cartil. 30, 945-955 (2022).
60. Deng, R.et al.Periosteal CD68+ F4/80+ macrophages are mechanosensitive for cortical bone formation by secretion and activation of TGF‐β1. Adv. Sci. 9, 2103343(2022).
61. Hubbard-Turner, T., Wikstrom, E. A., Guderian, S. & Turner, M. J. Acute ankle sprain in a mouse model. Med. Sci. Sports Exerc. 45, 1623-1628 (2013).
62. Wikstrom E. A.,Hubbard-Turner, T., Woods, S., Guderian, S. & Turner, M. J. Developing a mouse model of chronic ankle instability. Med. Sci. Sports Exerc. 47, 866-872 (2015).
Funding
Xu Cao (xcao11@jhmi.edu)

Accesses

Citations

Detail

Sections
Recommended

/