Age-related secretion of grancalcin by macrophages induces skeletal stem/progenitor cell senescence during fracture healing

Nan-Yu Zou1, Ran Liu1, Mei Huang1, Yu-Rui Jiao1, Jie Wei2,3,4,5, Yangzi Jiang6, Wen-Zhen He1, Min Huang1, Yi-Li Xu1, Ling Liu1, Yu-Chen Sun1, Mi Yang1, Qi Guo1, Yan Huang1, Tian Su1, Ye Xiao1, Wei-Shan Wang7, Chao Zeng2,3,4,5,8, Guang-Hua Lei2,4,5,8, Xiang-Hang Luo1,5,8, Chang-Jun Li1,5,8

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 6. DOI: 10.1038/s41413-023-00309-1
ARTICLE

Age-related secretion of grancalcin by macrophages induces skeletal stem/progenitor cell senescence during fracture healing

  • Nan-Yu Zou1, Ran Liu1, Mei Huang1, Yu-Rui Jiao1, Jie Wei2,3,4,5, Yangzi Jiang6, Wen-Zhen He1, Min Huang1, Yi-Li Xu1, Ling Liu1, Yu-Chen Sun1, Mi Yang1, Qi Guo1, Yan Huang1, Tian Su1, Ye Xiao1, Wei-Shan Wang7, Chao Zeng2,3,4,5,8, Guang-Hua Lei2,4,5,8, Xiang-Hang Luo1,5,8, Chang-Jun Li1,5,8
Author information +
History +

Abstract

Skeletal stem/progenitor cell (SSPC) senescence is a major cause of decreased bone regenerative potential with aging, but the causes of SSPC senescence remain unclear. In this study, we revealed that macrophages in calluses secrete prosenescent factors, including grancalcin (GCA), during aging, which triggers SSPC senescence and impairs fracture healing. Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair. Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence. Mechanistically, GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction, resulting in cellular senescence. Depletion of Plxnb2 in SSPCs impaired fracture healing. Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice. Thus, our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence, and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.

Cite this article

Download citation ▾
Nan-Yu Zou, Ran Liu, Mei Huang, Yu-Rui Jiao, Jie Wei, Yangzi Jiang, Wen-Zhen He, Min Huang, Yi-Li Xu, Ling Liu, Yu-Chen Sun, Mi Yang, Qi Guo, Yan Huang, Tian Su, Ye Xiao, Wei-Shan Wang, Chao Zeng, Guang-Hua Lei, Xiang-Hang Luo, Chang-Jun Li. Age-related secretion of grancalcin by macrophages induces skeletal stem/progenitor cell senescence during fracture healing. Bone Research, 2024, 12(0): 6 https://doi.org/10.1038/s41413-023-00309-1

References

1. Lane, J. M., Russell, L.& Khan, S. N. Osteoporosis. Clin. Orthop Relat. Res. 139-150 (2000).
2. Curtis, E. M.et al. Epidemiology of fractures in the United Kingdom1988-2012: variation with age, sex, geography, ethnicity and socioeconomic status. Bone 87, 19-26 (2016).
3. Tarrant S. M.& Balogh, Z. J. The global burden of surgical management of osteoporotic fractures. World J. Surg. 44, 1009-1019 (2020).
4. Ekegren, C. L., Edwards, E. R., de Steiger, R. & Gabbe, B. J. Incidence, costs and predictors of non-union, delayed union and mal-union following long bone fracture. Int. J. Environ. Res. Public Health 15, 2845 (2018).
5. Saul D.& Khosla, S. Fracture healing in the setting of endocrine diseases, aging, and cellular senescence. Endocr. Rev. 43, 984-1002 (2022).
6. Fang, C. L., Liu, B.& Wan, M. “Bone-SASP” in skeletal aging. Calcif. Tissue Int. 113, 68-82 (2023).
7. Khosla, S., Farr, J. N.& Monroe, D. G. Cellular senescence and the skeleton:pathophysiology and therapeutic implications. J. Clin. Invest. 132, e154888(2022).
8. Wan M.,Gray-Gaillard, E. F. & Elisseeff, J. H. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res. 9, 41(2021).
9. Farr, J. N.et al.Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072-1079 (2017).
10. Farr, J. N.et al.Identification of senescent cells in the bone microenvironment. J. Bone Miner Res. 31, 1920-1929 (2016).
11. Liu, X.et al.Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis. Nat. Commun. 12, 1832(2021).
12. Liu, X.et al.Oxylipin-PPARgamma-initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metab. 35, 667-684 (2023).
13. Li, C. J.et al.Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab. 33, 1957-1973 (2021).
14. Liu, J.et al.Age-associated callus senescent cells produce TGF-beta1 that inhibits fracture healing in aged mice. J. Clin. Invest. 132, e148073(2022).
15. Saul, D.et al.Modulation of fracture healing by the transient accumulation of senescent cells. Elife 10, e69958 (2021).
16. Ding, Q.et al.Deletion of p16 accelerates fracture healing in geriatric mice. Am. J. Transl. Res. 13, 11107-11125 (2021).
17. Chan, C. K.et al. Identification and specification of the mouse skeletal stem cell. Cell 160, 285-298 (2015).
18. Josephson, A. M.et al. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc. Natl. Acad. Sci. USA 116, 6995-7004 (2019).
19. Ambrosi, T. H.et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597, 256-262 (2021).
20. Lin, X.et al.Aged callus skeletal stem/progenitor cells contain an inflammatory osteogenic population with increased IRF and NF-kappaB pathways and reduced osteogenic potential. Front. Mol. Biosci. 9, 806528(2022).
21. Clark D., Nakamura M., Miclau T.& Marcucio, R. Effects of aging on fracture healing. Curr. Osteoporos. Rep. 15, 601-608 (2017).
22. Pajarinen, J.et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196, 80-89 (2019).
23. Bastian, O.et al.Systemic inflammation and fracture healing. J. Leukoc. Biol. 89, 669-673 (2011).
24. Wu A. C., Raggatt L. J., Alexander K. A.& Pettit, A. R. Unraveling macrophage contributions to bone repair. Bonekey Rep. 2, 373(2013).
25. Kitaori, T.et al.Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 60, 813-823 (2009).
26. Ringe, J.et al.Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J. Cell Biochem. 101, 135-146 (2007).
27. Baht, G. S.et al.Exposure to a youthful circulaton rejuvenates bone repair through modulation of beta-catenin. Nat. Commun. 6, 7131(2015).
28. Vi, L.et al.Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nat. Commun. 9, 5191(2018).
29. Clark, D.et al.Age-related changes to macrophages are detrimental to fracture healing in mice. Aging Cell 19, e13112 (2020).
30. Xu, J.et al.PDGFRalpha reporter activity identifies periosteal progenitor cells critical for bone formation and fracture repair. Bone Res. 10, 7(2022).
31. Debnath, S.et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133-139 (2018).
32. Jeffery E. C., Mann T. L. A., Pool J. A., Zhao, Z. & Morrison, S. J. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell 29,1547-1561 (2022).
33. Duchamp de Lageneste, O.et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat. Commun. 9, 773(2018).
34. Zhang, H.et al.Single-cell RNA sequencing reveals B cells are important regulators in fracture healing. Front. Endocrinol. (Lausanne) 12, 666140(2021).
35. Liu, H.et al.Prrx1 marks stem cells for bone, white adipose tissue and dermis in adult mice. Nat. Genet. 54, 1946-1958 (2022).
36. Sun, J.et al.Histone demethylase LSD1 is critical for endochondral ossification during bone fracture healing. Sci. Adv. 6, eaaz1410 (2020).
37. Gao, B.et al.Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J. Clin. Invest. 129, 2578-2594 (2019).
38. Ortinau, L. C.et al. Identification of functionally distinct Mx1+ αSMA+ periosteal skeletal stem cells. Cell Stem Cell 25, 784-796 (2019).
39. Shi, Y.et al.Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat. Commun. 8, 2043(2017).
40. Saul, D.et al.A new gene set identifies senescent cells and predicts senescenceassociated pathways across tissues. Nat. Commun. 13, 4827(2022).
41. Abram C. L., Roberge G. L., Hu, Y. & Lowell, C. A. Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. J. Immunol. Methods 408, 89-100 (2014).
42. Shi J., Hua L., Harmer D., Li P.& Ren, G. Cre driver mice targeting macrophages. Methods Mol. Biol. 1784, 263-275 (2018).
43. Zhang, Y.et al.PLEXIN-B2 promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells via activation of the RhoA signaling pathway. Cell Signal 62, 109343 (2019).
44. Pascoe, H. G., Wang, Y.& Zhang, X. Structural mechanisms of plexin signaling. Prog. Biophys. Mol. Biol. 118, 161-168 (2015).
45. Yepuri, G.et al. Positive crosstalk between arginase-II and S6K1 in vascular endothelial inflammation and aging. Aging Cell 11, 1005-1016 (2012).
46. Xiong Y., Yu Y., Montani J. P., Yang Z.& Ming, X. F. Arginase-II induces vascular smooth muscle cell senescence and apoptosis through p66Shc and p53 independently of its l-arginine ureahydrolase activity: implications for atherosclerotic plaque vulnerability. J. Am. Heart Assoc. 2, e000096(2013).
47. Le, A. N.et al.DRG2 depletion promotes endothelial cell senescence and vascular endothelial dysfunction. Int. J. Mol. Sci. 23, 2877(2022).
48. Xiong Y., Yepuri G., Montani J. P., Ming X. F.& Yang, Z. Arginase-II deficiency extends lifespan in mice. Front. Physiol. 8, 682(2017).
49. Shosha, E.et al.Endothelial arginase 2 mediates retinal ischemia/reperfusion injury by inducing mitochondrial dysfunction. Mol. Metab. 53, 101273(2021).
50. Touyz R. M.Linking LOX-1 and arginase II through mitochondria: a novel paradigm in endothelial dysfunction. Circ. Res. 115, 412-414 (2014).
51. Pandey, D.et al.OxLDL triggers retrograde translocation of arginase2 in aortic endothelial cells via ROCK and mitochondrial processing peptidase. Circ. Res. 115, 450-459 (2014).
52. Hozain S.& Cottrell, J. CDllb+ targeted depletion of macrophages negatively affects bone fracture healing. Bone 138, 115479 (2020).
53. Schlundt, C.et al. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone 106, 78-89 (2018).
54. Yu, W.et al. Plexin-B2 mediates physiologic and pathologic functions of angiogenin. Cell 171, 849-864 (2017).
55. Saha B., Ypsilanti A. R., Boutin C., Cremer H.& Chedotal, A. Plexin-B2 regulates the proliferation and migration of neuroblasts in the postnatal and adult subventricular zone. J. Neurosci. 32, 16892-16905 (2012).
56. Zou, N., Liu, R.& Li, C. Cathepsin K+ non-osteoclast cells in the skeletal system: function, models, identity, and therapeutic implications. Front. Cell Dev. Biol. 10, 818462(2022).
57. Einhorn T. A.& Gerstenfeld, L. C. Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 11, 45-54 (2015).
58. Xie, H.et al.PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20, 1270-1278 (2014).
59. Xiao, Y. Z.et al.Reducing hypothalamic stem cell senescence protects against aging-associated physiological decline. Cell Metab. 31, 534-548 (2020).
Funding
Xiang-Hang Luo (xianghangluo@hotmail.com) or Chang-Jun Li (lichangjun@csu.edu.cn)

Accesses

Citations

Detail

Sections
Recommended

/