Estradiol increases cortical and trabecular bone accrual and bone strength in an adolescent male-to-female mouse model of gender-affirming hormone therapy

Tian Nie1, Varun S. Venkatesh1, Suzanne Golub1, Kathryn S. Stok2, Haniyeh Hemmatian1, Reena Desai3, David J. Handelsman3, Jeffrey D. Zajac1, Mathis Grossmann1, Rachel A. Davey1

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 1. DOI: 10.1038/s41413-023-00308-2
ARTICLE

Estradiol increases cortical and trabecular bone accrual and bone strength in an adolescent male-to-female mouse model of gender-affirming hormone therapy

  • Tian Nie1, Varun S. Venkatesh1, Suzanne Golub1, Kathryn S. Stok2, Haniyeh Hemmatian1, Reena Desai3, David J. Handelsman3, Jeffrey D. Zajac1, Mathis Grossmann1, Rachel A. Davey1
Author information +
History +

Abstract

The effects of gender-affirming hormone therapy on the skeletal integrity and fracture risk in transitioning adolescent trans girls are unknown. To address this knowledge gap, we developed a mouse model to simulate male-to-female transition in human adolescents in whom puberty is first arrested by using gonadotrophin-releasing hormone analogs with subsequent estradiol treatment. Puberty was suppressed by orchidectomy in male mice at 5 weeks of age. At 3 weeks post-surgery, male-to-female mice were treated with a high dose of estradiol (~0.85 mg) by intraperitoneal silastic implantation for 12 weeks. Controls included intact and orchidectomized males at 3 weeks post-surgery, vehicle-treated intact males, intact females and orchidectomized males at 12 weeks post-treatment. Compared to male controls, orchidectomized males exhibited decreased peak bone mass accrual and a decreased maximal force the bone could withstand prior to fracture. Estradiol treatment in orchidectomized male-to-female mice compared to mice in all control groups was associated with an increased cortical thickness in the mid-diaphysis, while the periosteal circumference increased to a level that was intermediate between intact male and female controls, resulting in increased maximal force and stiffness. In trabecular bone, estradiol treatment increased newly formed trabeculae arising from the growth plate as well as mineralizing surface/bone surface and bone formation rate, consistent with the anabolic action of estradiol on osteoblast proliferation. These data support the concept that skeletal integrity can be preserved and that long-term fractures may be prevented in trans girls treated with GnRHa and a sufficiently high dose of GAHT. Further study is needed to identify an optimal dose of estradiol that protects the bone without adverse side effects.

Cite this article

Download citation ▾
Tian Nie, Varun S. Venkatesh, Suzanne Golub, Kathryn S. Stok, Haniyeh Hemmatian, Reena Desai, David J. Handelsman, Jeffrey D. Zajac, Mathis Grossmann, Rachel A. Davey. Estradiol increases cortical and trabecular bone accrual and bone strength in an adolescent male-to-female mouse model of gender-affirming hormone therapy. Bone Research, 2024, 12(0): 1 https://doi.org/10.1038/s41413-023-00308-2

References

1. Cheung A. S., Wynne K., Erasmus J., Murray S.& Zajac, J. D. Position statement on the hormonal management of adult transgender and gender diverse individuals. Med. J. Aust. 211, 127-133 (2019).
2. Karsenty G.The mutual dependence between bone and gonads. J. Endocrinol. 213, 107-114 (2012).
3. Vlot, M. C.et al. Effect of pubertal suppression and cross-sex hormone therapy on bone turnover markers and bone mineral apparent density (BMAD) in transgender adolescents. Bone 95, 11-19 (2017).
4. Klink D., Caris M., Heijboer A., van Trotsenburg, M. & Rotteveel, J. Bone mass in young adulthood following gonadotropin-releasing hormone analog treatment and cross-sex hormone treatment in adolescents with gender dysphoria. J. Clin. Endocrinol. Metab. 100, E270-E275 (2015).
5. Stoffers I. E., de Vries, M. C. & Hannema, S. E. Physical changes, laboratory parameters, and bone mineral density during testosterone treatment in adolescents with gender dysphoria. J. Sex. Med. 16, 1459-1468 (2019).
6. Navabi B., Tang K., Khatchadourian K.& Lawson, M. L. Pubertal suppression, bone mass, and body composition in youth with gender dysphoria. Pediatrics 148, e2020039339 (2021).
7. Schagen S. E.E., Wouters, F. M., Cohen-Kettenis, P. T., Gooren, L. J. & Hannema, S. E. Bone development in transgender adolescents treated with GnRH analogues and subsequent gender-affirming hormones. J. Clin. Endocrinol. Metab. 105, e4252-e4263 (2020).
8. van der Loos, M.et al. Bone mineral density in transgender adolescents treated with puberty suppression and subsequent gender-affirming hormones. JAMA Pediatr. 177, 1332-1341 (2023).
9. Falahati-Nini, A. et al. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J. Clin. Invest. 106, 1553-1560 (2000).
10. Finkelstein, J. S.et al.Gonadal steroid-dependent effects on bone turnover and bone mineral density in men. J. Clin. Invest. 126, 1114-1125 (2016).
11. Smith, M. R. Osteoporosis during androgen deprivation therapy for prostate cancer. Urology 60, 79-85 (2002).
12. Sims, N. A.et al.A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J. Clin. Invest. 111, 1319-1327 (2003).
13. Sasano, H.et al.Aromatase in human bone tissue. J. Bone Min. Res. 12, 1416-1423 (1997).
14. Villalvilla, A.et al. Aromatase expression in human chondrocytes: an induction due to culture. Maturitas 85, 27-33 (2016).
15. Sjogren, K.et al.Elevated aromatase expression in osteoblasts leads to increased bone mass without systemic adverse effects. J. Bone Min. Res. 24, 1263-1270 (2009).
16. Boogers, L. S.et al.The dose-dependent effect of estrogen on bone mineral density in trans girls. Eur. J. Endocrinol. 189, 290-296 (2023).
17. Goetz, T. G.et al.Cross-sex testosterone therapy in ovariectomized mice: addition of low-dose estrogen preserves bone architecture. Am. J. Physiol. Endocrinol. Metab. 313, E540-E551 (2017).
18. Dubois, V.et al.Testosterone restores body composition, bone mass, and bone strength following early puberty suppression in a mouse model mimicking the clinical strategy in trans boys. J. Bone Miner Res. 38, 1497-1508 (2023).
19. Handelsman, D. J.et al.Ultrasensitive serum estradiol measurement by liquid chromatography-mass spectrometry in postmenopausal women and mice. J. Endocr. Soc. 4, bvaa086 (2020).
20. Callewaert F., Sinnesael M., Gielen E., Boonen S.& Vanderschueren, D. Skeletal sexual dimorphism: relative contribution of sex steroids, GH-IGF1, and mechanical loading. J. Endocrinol. 207, 127-134 (2010).
21. Schoenau E., Neu C. M., Rauch F.& Manz, F. The development of bone strength at the proximal radius during childhood and adolescence. J. Clin. Endocrinol. Metab. 86, 613-618 (2001).
22. Beamer W. G., Donahue L. R., Rosen, C. J. & Baylink, D. J. Genetic variability in adult bone density among inbred strains of mice. Bone 18, 397-403 (1996).
23. Wiepjes, C. M.et al.Fracture risk in trans women and trans men using long-term gender-affirming hormonal treatment: a nationwide cohort study. J. Bone Min. Res. 35, 64-70 (2020).
24. Motta, G.et al.Fracture risk assessment in an Italian group of transgender women after gender-confirming surgery. J. Bone Min. Metab. 38, 885-893 (2020).
25. Jackson, S. J.et al.Does age matter? The impact of rodent age on study outcomes. Lab Anim. 51, 160-169 (2017).
26. Russell, P. K.et al.Androgen receptor action in osteoblasts in male mice is dependent on their stage of maturation. J. Bone Min. Res. 30, 809-823 (2015).
27. Jilka R. L.The relevance of mouse models for investigating age-related bone loss in humans. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1209-1217 (2013).
28. Turner R. T., Hannon K. S., Demers L. M., Buchanan J.& Bell, N. H. Differential effects of gonadal function on bone histomorphometry in male and female rats. J. Bone Min. Res. 4, 557-563 (1989).
29. Venken, K.et al.Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J. Bone Miner. Res. 21, 576-585 (2006).
30. Kim, N. R.et al.Novel model to study the physiological effects of temporary or prolonged sex steroid deficiency in male mice. Am. J. Physiol. Endocrinol. Metab. 320, E415-E424 (2021).
31. Matsumoto C., Inada M., Toda, K. & Miyaura, C. Estrogen and androgen play distinct roles in bone turnover in male mice before and after reaching sexual maturity. Bone 38, 220-226 (2006).
32. MacLean, H. E.et al. DNA-binding-dependent androgen receptor signaling contributes to gender differences and has physiological actions in males and females. J. Endocrinol. 206, 93-103 (2010).
33. Joseph, T., Ting, J.& Butler, G. The effect of GnRH analogue treatment on bone mineral density in young adolescents with gender dysphoria: findings from a large national cohort. J. Pediatr. Endocrinol. Metab. 32, 1077-1081 (2019).
34. Bain S. D., Bailey M. C., Celino D. L., Lantry M. M.& Edwards, M. W. High-dose estrogen inhibits bone resorption and stimulates bone formation in the ovariectomized mouse. J. Bone Min. Res. 8, 435-442 (1993).
35. Bouillon R., Bex M., Vanderschueren D.& Boonen, S. Estrogens are essential for male pubertal periosteal bone expansion. J. Clin. Endocrinol. Metab. 89, 6025-6029 (2004).
36. Morgan, E. F., Unnikrisnan, G. U.& Hussein, A. I. Bone mechanical properties in healthy and diseased states. Annu. Rev. Biomed. Eng. 20, 119-143 (2018).
37. Qu, Q.et al. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone 22, 201-209 (1998).
38. Galea, G. L.et al.Estrogen receptor alpha mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute downregulation of the Wnt antagonist Sost is mediated by estrogen receptor beta. J. Biol. Chem. 288, 9035-9048 (2013).
39. Bradford P. G., Gerace K. V., Roland R. L.& Chrzan, B. G. Estrogen regulation of apoptosis in osteoblasts. Physiol. Behav. 99, 181-185 (2010).
40. Sobacchi C., Schulz A., Coxon F. P., Villa A.& Helfrich, M. H. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol. 9, 522-536 (2013).
41. Sims N. A.& Martin, T. J. Osteoclasts provide coupling signals to osteoblast lineage cells through multiple mechanisms. Annu. Rev. Physiol. 82, 507-529 (2020).
42. Ornoy, A.et al.Gender dependent effects of testosterone and 17 beta-estradiol on bone growth and modelling in young mice. Bone Min. 24, 43-58 (1994).
43. Vandenput, L.et al.Evidence from the aged orchidectomized male rat model that 17beta-estradiol is a more effective bone-sparing and anabolic agent than 5alpha-dihydrotestosterone. J. Bone Min. Res. 17, 2080-2086 (2002).
44. Borjesson, A. E.et al.The role of estrogen receptor alpha in growth plate cartilage for longitudinal bone growth. J. Bone Min. Res. 25, 2690-2700 (2010).
45. Salas-Humara, C., Sequeira, G. M., Rossi, W. & Dhar, C. P. Gender affirming medical care of transgender youth. Curr. Probl. Pediatr. Adolesc. Health Care 49, 100683 (2019).
46. Hembree, W. C.et al.Endocrine treatment of transsexual persons: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 94, 3132-3154 (2009).
47. Sun, L.et al. FSH directly regulates bone mass. Cell 125, 247-260 (2006).
48. Wierckx, K.et al.Prevalence of cardiovascular disease and cancer during cross-sex hormone therapy in a large cohort of trans persons: a case-control study. Eur. J. Endocrinol. 169, 471-478 (2013).
49. Percie du Sert, N.et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Sci. 4, e100115(2020).
50. Zhou, Y.et al.Effects of maternal nuclear genome on the timing of puberty in mice offspring. J. Endocrinol. 193, 405-412 (2007).
51. Davey R. A., Hahn C. N., May B. K.& Morris, H. A. Osteoblast gene expression in rat long bones: effects of ovariectomy and dihydrotestosterone on mRNA levels. Calcif. Tissue Int. 67, 75-79 (2000).
52. Otsu N.Threshold selection method from Gray-level histograms. IEEE T Syst. Man Cyb. 9, 62-66 (1979).
53. Hildebrand T.& P, R. A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185, 67-75 (1997).
54. Walker E. C.,McGregor, N. E., Chan, A. S. M. & Sims, N. A. Measuring bone volume at multiple densities by micro-computed tomography. Bio. Protoc. 11, e3873(2021).
55. Clarke, M. V.et al. A role for the calcitonin receptor to limit bone loss during lactation in female mice by inhibiting osteocytic osteolysis. Endocrinology 156, 3203-3214 (2015).
56. Notini, A. J.et al.Osteoblast deletion of exon 3 of the androgen receptor gene results in trabecular bone loss in adult male mice. J. Bone Min. Res. 22, 347-356 (2007).
57. Kouadjo K. E., Nishida Y., Cadrin-Girard, J. F., Yoshioka, M. & St-Amand, J. Housekeeping and tissue-specific genes in mouse tissues. BMC Genomics 8, 127 (2007).
58. Stephens, A. S., Stephens, S. R.& Morrison, N. A. Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages. BMC Res. Notes 4, 410 (2011).
Funding
Rachel A. Davey (r.davey@unimelb.edu.au)

Accesses

Citations

Detail

Sections
Recommended

/