A new perspective on intervertebral disc calcification—from bench to bedside

Emanuel J. Novais1,2, Rajkishen Narayanan3, Jose A. Canseco1,3, Koen van de Wetering1, Christopher K. Kepler1,3, Alan S. Hilibrand3, Alexander R. Vaccaro1,3, Makarand V. Risbud1

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 3. DOI: 10.1038/s41413-023-00307-3
REVIEW ARTICLE

A new perspective on intervertebral disc calcification—from bench to bedside

  • Emanuel J. Novais1,2, Rajkishen Narayanan3, Jose A. Canseco1,3, Koen van de Wetering1, Christopher K. Kepler1,3, Alan S. Hilibrand3, Alexander R. Vaccaro1,3, Makarand V. Risbud1
Author information +
History +

Abstract

Disc degeneration primarily contributes to chronic low back and neck pain. Consequently, there is an urgent need to understand the spectrum of disc degeneration phenotypes such as fibrosis, ectopic calcification, herniation, or mixed phenotypes. Amongst these phenotypes, disc calcification is the least studied. Ectopic calcification, by definition, is the pathological mineralization of soft tissues, widely studied in the context of conditions that afflict vasculature, skin, and cartilage. Clinically, disc calcification is associated with poor surgical outcomes and back pain refractory to conservative treatment. It is frequently seen as a consequence of disc aging and progressive degeneration but exhibits unique molecular and morphological characteristics: hypertrophic chondrocyte-like cell differentiation; TNAP, ENPP1, and ANK upregulation; cell death; altered Pi and PPi homeostasis; and local inflammation. Recent studies in mouse models have provided a better understanding of the mechanisms underlying this phenotype. It is essential to recognize that the presentation and nature of mineralization differ between AF, NP, and EP compartments. Moreover, the combination of anatomic location, genetics, and environmental stressors, such as aging or trauma, govern the predisposition to calcification. Lastly, the systemic regulation of calcium and Pi metabolism is less important than the local activity of PPi modulated by the ANK-ENPP1 axis, along with disc cell death and differentiation status. While there is limited understanding of this phenotype, understanding the molecular pathways governing local intervertebral disc calcification may lead to developing disease-modifying drugs and better clinical management of degeneration-related pathologies.

Cite this article

Download citation ▾
Emanuel J. Novais, Rajkishen Narayanan, Jose A. Canseco, Koen van de Wetering, Christopher K. Kepler, Alan S. Hilibrand, Alexander R. Vaccaro, Makarand V. Risbud. A new perspective on intervertebral disc calcification—from bench to bedside. Bone Research, 2024, 12(0): 3 https://doi.org/10.1038/s41413-023-00307-3

References

1. Mokdad, A. H.et al. The state of US health, 1990-2016. JAMA 319, 1444-1472 (2018).
2. Katz, J. N. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J. Bone Jt. Surg. Ser. A 88, 21-24 (2006).
3. Cheung K. M.C. et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Philos. Pa 1976) 34, 934-940 (2009).
4. Chou, R.et al.Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann. Intern. Med. 147, 478-491 (2007).
5. Roberts S., Evans H., Trivedi, J. & Menage, J. Histology and pathology of the human intervertebral disc. J. Bone Jt. Surg. Ser. A 88, 10-14 (2006).
6. Airaksinen, O.et al.Chapter 4: European guidelines for the management of chronic nonspecific low back pain. Eur. Spine J. 15, S192-300 (2006).
7. Dowdell, J.et al.Intervertebral disk degeneration and repair. Clin. Neurosurg. 80, S46-S54 (2017).
8. Dvořák J., Vajda E. G., Grob D.& Panjabi, M. M. Normal motion of the lumbar spine as related to age and gender. Eur. Spine J. 4, 18-23 (1995).
9. Adams, M. A. & Hutton, W. C. The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J. Bone Jt. Surg. Ser. B 62, 358-362 (1980).
10. Huang, Y.-C., Urban, J. P.G. & Luk, K. D. K. Intervertebral disc regeneration: do nutrients lead the way? Nat. Rev. Rheumatol. 10, 1-6 (2014).
11. Tsantrizos A., Ito K., Aebi M.& Steffen, T. Internal strains in healthy and degenerated lumbar intervertebral discs. Spine (Philos. Pa 1976) 30, 2129-2137 (2005).
12. Uematsu, Y., Matuzaki, H.& Iwahashi, M. Effects of nicotine on the intervertebral disc: an experimental study in rabbits. J. Orthop. Sci. 6, 77-82 (2001).
13. Vo, N.et al.Differential effects of nicotine and tobacco smoke condensate on human annulus fibrosus cell metabolism. J. Orthop. Res. 29, 1585-1591 (2011).
14. Singh D., Park W., Hwang, D. & Levy, M. S. Severe obesity effect on low back biomechanical stress of manual load lifting. Work 51, 337-348 (2015).
15. Vadalà, G.et al.Early intervertebral disc degeneration changes in asymptomatic weightlifters assessed by T1ρ' -magnetic resonance imaging. Spine (Philos. Pa 1976) 39, 1881-1886 (2014).
16. UN. World Population Prospects2019 (Department of Economic and Social Affairs, 2019).
17. Munir, S.et al.Endplate defect is heritable, associated with low back pain and triggers intervertebral disc degeneration: a longitudinal study from Twinsuk. Spine (Philos. Pa 1976) 43, 1496-1501 (2018).
18. Battié, M. C.et al.The twin spine study: contributions to a changing view of disc degeneration. Spine J. 9, 47-59 (2009).
19. Toktaş, Z. O.et al.Association of collagen I, IX and vitamin D receptor gene polymorphisms with radiological severity of intervertebral disc degeneration in Southern European Ancestor. Eur. Spine J. 24, 2432-2441 (2015).
20. Takahashi, M.et al. The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J. Bone Jt. Surg. Ser. B 83, 491-495 (2001).
21. Huang, X.et al.Interleukin 6 (IL-6) and IL-10 promoter region polymorphisms are associated with risk of lumbar disc herniation in a Northern Chinese han population. Genet. Test. Mol. Biomark. 21, 17-23 (2017).
22. Guerin H. L.& Elliott, D. M. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelstic model. J. Orthop. Res. 25, 508-516 (2007).
23. O'Connell, G. D., Jacobs, N. T., Sen, S., Vresilovic, E. J. & Elliott, D. M. Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration. J. Mech. Behav. Biomed. Mater. 4, 933-942 (2011).
24. Roberts S.Disc morphology in health and disease. Biochem. Soc. Trans. 30, 864-869 (2002).
25. Chanchairujira, K.et al. Intervertebral disk calcification of the spine in an elderly population: radiographic prevalence, location,distribution and correlation with spinal degeneration. Radiology 230, 499-503 (2007).
26. Boos, N.et al.Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Philos. Pa 1976) 27, 2631-2644 (2002).
27. Novais, E. J.et al.Comparison of inbred mouse strains shows diverse phenotypic outcomes of intervertebral disc aging. Aging Cell 19, e13148 (2020).
28. Yee, A.et al.Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. Osteoarthr. Cartil. 24, 503-13 (2016).
29. Roberts S., Bains M. A., Kwan A., Menage J.& Eisenstein, S. M. Type X collagen in the human invertebral disc: an indication of repair or remodelling? Histochem. J. 30, 89-95 (1998).
30. Vo, N.et al.Accelerated aging of intervertebral discs in a mouse model of progeria. J. Orthop. Res. 28, 1600-1607 (2010).
31. Bachmeier, B. E.et al.Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur. Spine J. 18, 1573-1586 (2009).
32. Hristova, G. I.et al.Calcification in human intervertebral disc degeneration and scoliosis. J. Orthop. Res. 29, 1888-95 (2011).
33. Shao, J.et al.Differences in calcification and osteogenic potential of herniated discs according to the severity of degeneration based on Pfirrmann grade: a cross-sectional study. BMC Musculoskelet. Disord. 17, 191(2016).
34. Teraguchi, M.et al.Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: the Wakayama Spine Study. Osteoarthr. Cartil. 22, 104-110 (2014).
35. Zehra, U.et al.Mechanisms and clinical implications of intervertebral disc calcification. Nat. Rev. Rheumatol. 18, 352-362 (2022).
36. Bangert, B. A.et al. Hyperintense disks on T1-weighted MR images: correlation with calcification. Radiology 195, 437-443 (1995).
37. Weinberger A.& Myers, A. R. Intervertebral disc calcification in adults: a review. Semin. Arthritis Rheum. 8, 69-75 (1978).
38. Stigen, Ø., Ciasca, T.& Kolbjørnsen, Ø. Calcification of extruded intervertebral discs in dachshunds: a radiographic, computed tomographic and histopathological study of 25 cases. Acta Vet. Scand. 61, 13(2019).
39. Park, J.et al. Dual pathways to endochondral osteoblasts: a novel chondrocytederived osteoprogenitor cell identified in hypertrophic cartilage. Biol. Open 4, 608-621 (2015).
40. Jin, L.et al.Annulus fibrosus cell characteristics are a potential source of intervertebral disc pathogenesis. PLoS One 9, e96519 (2014).
41. Zhao, Y. P.et al.Progranulin knockout accelerates intervertebral disc degeneration in aging mice. Sci. Rep. 5, 9102(2015).
42. Stokes, I. A. F. & Iatridis, J. C. Mechanical conditions that accelerate intervertebral disc degeneration: Overload versus immobilization. Spine 29, 2724-2732 (2004).
43. Roberts, S., Menage, J.& Eisenstein, S. M. The cartilage end‐plate and intervertebral disc in scoliosis: calcification and other sequelae. J. Orthop. Res. 11, 747-757 (1993).
44. Sun Y.& Mauerhan, D. R. Meniscal calcification, pathogenesis and implications. Curr. Opin. Rheumatol. 24, 152-157 (2012).
45. Mitrovic, D. R.et al.The prevalence of chondrocalcinosis in the human knee joint. An autopsy survey. J. Rheumatol. 15, 633-641 (1988).
46. Mitrovic, D.et al.Anatomic incidence of meniscochondrocalcinosis of the knee. Rev. Rhum. Mal. Osteoartic. 49, 495-499 (1982).
47. Meyer, F.et al.Chondrocytes from osteoarthritic and chondrocalcinosis cartilage represent different phenotypes. Front. Cell Dev. Biol. 26, e622287(2021).
48. Le Graverand, M. P. H. et al. Formation and phenotype of cell clusters in osteoarthritic meniscus. Arthritis Rheum. 44, 1808-1818 (2001).
49. Zhang, J.et al. Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice. Oncotarget 7, 12000-12009 (2016).
50. Li, Q.et al.Inhibition of tissue-nonspecific alkaline phosphatase attenuates ectopic mineralization in the Abcc6-/- mouse model of PXE but not in the Enpp1 mutant mouse models of GACI. J. Investig. Dermatol. 139, 360-368 (2019).
51. Jiang S., Zhang C., Lu, Y. & Yuan, F. The molecular mechanism research of cartilage calcification induced by osteoarthritis. Bioengineered 13, 13082-13088 (2022).
52. Kempf, H., Komarova, S.& Murshed, M. Editorial: ectopic mineralization of tissues: mechanisms, risk factors, diseases, and prevention. Front. Cell Dev. Biol. 9, 759702(2021).
53. Ziegler, S. G.et al.Ectopic calcification in pseudoxanthoma elasticum responds to inhibition of tissue-nonspecific alkaline phosphatase. Sci. Transl. Med. 9, eaal1669 (2017).
54. Du, Y.et al.Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2. Circ. Res. 108, 917-928 (2011).
55. Rosenthal A. K.Basic calcium phosphate crystal-associated musculoskeletal syndromes: an update. Curr. Opin. Rheumatol. 30, 168-172 (2018).
56. Fournier D. E., Kiser P. K., Beach R. J., Dixon S. J.& Séguin, C. A. Dystrophic calcification and heterotopic ossification in fibrocartilaginous tissues of the spine in diffuse idiopathic skeletal hyperostosis (DISH). Bone Res. 8, 16(2020).
57. Moore, S. N.et al.Validation of a radiography-based quantification designed to longitudinally monitor soft tissue calcification in skeletal muscle. PLoS One 11, e0159624 (2016).
58. Teebi, A. S.et al.Keutel syndrome: further characterization and review. Am. J. Med. Genet. 78, 182-187 (1998).
59. Oyoung, J.et al.Matrix gla protein inhibits ectopic calcification by a direct interaction with hydroxyapatite crystals. J. Am. Chem. Soc. 133, 18406-18412 (2011).
60. Warraich, S.et al.Loss of equilibrative nucleoside transporter 1 in mice leads to progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis in humans. J. Bone Miner. Res. 28, 1135-49 (2013).
61. Schäfer, C.et al.The serum protein α2-Heremans-Schmid glycoprotein/ fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Investig. 112, 357-66 (2003).
62. Johnson K.& Terkeltaub, R. Inorganic pyrophosphate (PPI) in pathologic calcification of articular cartilage. Front. Biosci. 1, 988-997 (2005).
63. Babler, A.et al.Microvasculopathy and soft tissue calcification in mice are governed by fetuin-A, magnesium and pyrophosphate. PLoS One 15, e0228938 (2020).
64. Murshed M., Harmey D., Millán J. L., McKee, M. D. & Karsenty, G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 19, 1093-1104 (2005).
65. Bourne, L. E.et al.Evidence that pyrophosphate acts as an extracellular signalling molecule to exert direct functional effects in primary cultures of osteoblasts and osteoclasts. Bone 176, 116868 (2023).
66. ter Braake, A. D., Shanahan, C. M. & de Baaij, J. H. F. Magnesium counteracts vascular calcification. Arterioscler Thromb. Vasc. Biol. 37, 1431-1445 (2017).
67. Rimer, J. D., Sakhaee, K.& Maalouf, N. M. Citrate therapy for calcium phosphate stones. Curr. Opin. Nephrol. Hypertens. 28, 130-139 (2019).
68. Szeri, F.et al.The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP. PLoS Genet. 16, e1008884(2020).
69. Rutsch, F.et al.Mutations in ENPP1 are associated with ‘idiopathic' infantile arterial calcification. Nat. Genet. 34, 379-381 (2003).
70. Jansen, R. S.et al.ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation - brief report. Arterioscler Thromb. Vasc. Biol. 34, 1985-1989 (2014).
71. Harmey, D.et al.Concerted regulation of inorganic pyrophosphate and osteopontin by Akp2, Enpp1, and Ank: an integrated model of the pathogenesis of mineralization disorders. Am. J. Pathol. 164, 1199-1209 (2004).
72. Nürnberg, P.et al.Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nat. Genet. 28, 37-41 (2001).
73. Szeri, F.et al.The mineralization regulator ANKH mediates cellular efflux of ATP, not pyrophosphate. J. Bone Miner. Res. 37, 1024-1031 (2022).
74. Moorhead, W. J.et al.Dysregulation of FOXO1 (Forkhead Box O1 Protein) drives calcification in arterial calcification due to deficiency of CD73 and is present in peripheral artery disease. Arterioscler Thromb. Vasc. Biol. 40, 1680-1694 (2020).
75. Ferreira, C. R.et al.Prospective phenotyping of long-term survivors of generalized arterial calcification of infancy (GACI). Genet. Med. 23, 396-407 (2021).
76. Ho, A. M., Johnson, M. D. & Kingsley, D. M. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289, 265-70 (2000).
77. Ohnishi, T.et al.Loss of function mutation in Ank causes aberrant mineralization and acquisition of osteoblast-like-phenotype by the cells of the intervertebral disc. Cell Death Dis. 14, 447(2023).
78. Cudrici, C. D.et al. Multifocal calcific periarthritis with distinctive clinical and radiological features in patients with CD73 deficiency. Rheumatology 61, 163-173 (2022).
79. Ichikawa, N.et al.Arterial calcification due to deficiency of CD73 (ACDC) as one of rheumatic diseases associated with periarticular calcification. J. Clin. Rheumatol. 21, 216-220 (2015).
80. Millán J. L.& Whyte, M. P. Alkaline phosphatase and hypophosphatasia. Calcified Tissue Int. 98, 398-416 (2016).
81. Lee, S. J., Lee, I. K.& Jeon, J. H. Vascular calcification—new insights into its mechanism. Int. J. Mol. Sci. 21, 2685(2020).
82. Henze, L. A.et al. Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. Aging 11, 5445-5462 (2019).
83. Tschaffon, M. E. A.et al. A novel in vitro assay to study chondrocyte-toosteoblast transdifferentiation. Endocrine 75, 266-275 (2022).
84. Nishimura, R.et al.Osterix regulates calcification and degradation of chondrogenic matrices through matrix metalloproteinase 13 (MMP13) expression in association with transcription factor Runx2 during endochondral ossification. J. Biol. Chem. 287, 33179-33190 (2012).
85. Kapustin, A. N.et al.Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ. Res. 109, e1-e12 (2011).
86. Yang, W.et al. Extracellular vesicles in vascular calcification. Clin. Chim. Acta 499, 118-122 (2019).
87. Furmanik, M.et al.Endoplasmic reticulum stress mediates vascular smooth muscle cell calcification via increased release of Grp78 (glucose-regulated protein, 78 kDa)-loaded extracellular vesicles. Arterioscler Thromb. Vasc. Biol. 41, 898-914 (2021).
88. Grootaert, M. O. J.et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 11, 2014-2032 (2015).
89. Duan X., Zhou Y., Teng X., Tang C.& Qi, Y. Endoplasmic reticulum stressmediated apoptosis is activated in vascular calcification. Biochem. Biophys. Res. Commun. 387, 694-699 (2009).
90. Miyazaki-Anzai,S. et al. Endoplasmic reticulum stress effector CCAAT/enhancerbinding protein homologous protein (CHOP) regulates chronic kidney diseaseinduced vascular calcification. J. Am. Heart Assoc. 24, e000949(2014).
91. Hsu, Y. J.et al.Hyperphosphatemia induces protective autophagy in endothelial cells through the inhibition of Akt/mTOR signaling. J. Vasc. Surg. 62, 210-221 (2015).
92. Frauscher, B.et al.Autophagy protects from uremic vascular media calcification. Front. Immunol. 9, 1866(2018).
93. Kim, H.et al.α-Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway. J. Cell Mol. Med. 16, 273-86 (2012).
94. Proudfoot, D.et al.Apoptosis regulates human vascular calcification in vitro. Circ. Res. 87, 1055-62 (2000).
95. Li, X., Yang, H. Y. & Giachelli, C. M. BMP-2 promotes phosphate uptake, phenotypic modulation,calcification of human vascular smooth muscle cells. Atherosclerosis 199, 271-277 (2008).
96. Lin, M. E.et al.Runx2 deletion in smooth muscle cells inhibits vascular osteochondrogenesis and calcification but not atherosclerotic lesion formation. Cardiovasc. Res. 112, 606-616 (2016).
97. Lotz, J. C. Animal models of intervertebral disc degeneration: lessons learned. Spine 29, 2742-2750 (2004).
98. Glasson, S. S., Blanchet, T. J.& Morris, E. A. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil. 15, 1061-1069 (2007).
99. Kim, H. N.et al.Elimination of senescent osteoclast progenitors has no effect on the age-associated loss of bone mass in mice. Aging Cell 18, e12923 (2019).
100. Farr, J. N.et al.Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072-1079 (2017).
101. Choi, K. S., Cohn, M. J.& Harfe, B. D. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev. Dyn. 237, 3953-8 (2008).
102. Chan W. C. W., Au T. Y. K., Tam V., Cheah, K. S. E. & Chan, D. Coming together is a beginning: the making of an intervertebral disc. Birth Defects Res. C. Embryo Today 102, 83-100 (2014).
103. McCann, M. R., Tamplin, O. J., Rossant, J. & Seǵuin, C. A. Tracing notochordderived cells using a Noto-cre mouse: implications for intervertebral disc development. DMM Dis. Models Mech. 5, 73-82 (2012).
104. Aszódi A., Chan D., Hunziker E., Bateman J. F.& Fässler, R. Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J. Cell Biol. 143, 1399-1412 (1998).
105. Smit T. H.The use of a quadruped as an in vivo model for the study of the spine - biomechanical considerations. Eur. Spine J. 11, 137-44 (2002).
106. Novais, E. J.et al.Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat. Commun. 12, 5213(2021).
107. Tessier S., Tran V. A., Ottone O. K.& Novais, E. J. TonEBP-deficiency accelerates intervertebral disc degeneration underscored by matrix remodeling, cytoskeletal rearrangements, and changes in proinflammatory gene expression. Matrix Biol. 87, 94-111 (2019).
108. Novais E. J., Diekman B. O., Shapiro I. M.& Risbud, M. V. p16 Ink4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence. Matrix Biol. 82, 54-70 (2019).
109. Gorth, D. J., Shapiro, I. M.& Risbud, M. V. A new understanding of the role of IL-1 in age-related intervertebral disc degeneration in a murine model. J. Bone Miner. Res. 34, 1531-1542 (2019).
110. Choi, H.et al.A novel mouse model of intervertebral disc degeneration shows altered cell fate and matrix homeostasis. Matrix Biol. 70, 102-122 (2018).
111. Rai, M. F.et al.Heritability of articular cartilage regeneration and its association with ear-wound healing. Arthritis Rheum. 64, 2300-2310 (2013).
112. Hrbek T., de Brito R. A., Wang B., Pletscher, L. S. & Cheverud, J. M. Genetic characterization of a new set of recombinant inbred lines (LGXSM) formed from the intercross of SM/J and LG/J inbred mouse strains. Mamm. Genome 17, 417-429 (2006).
113. Rai M. F., Schmidt E. J., Hashimoto S., Cheverud J. M.& Sandell, L. J. Genetic loci that regulate ectopic calcification in response to knee trauma in LG/J by SM/J advanced intercross mice. J. Orthop. Res. 33, 1412-23 (2015).
114. Priante, G.et al.Cell death in ectopic calcification of the kidney. Cell Death Dis. 10, 466(2019).
115. Patel, J. J.et al.Differing calcification processes in cultured vascular smooth muscle cells and osteoblasts. Exp. Cell Res. 380, 100-113 (2019).
116. Chen, Q.et al.HMGB1 induces secretion of matrix vesicles by macrophages to enhance ectopic mineralization. PLoS One 11, e0156686 (2016).
117. Hakim, F. T.et al.Hereditary joint disorder in progressive ankylosis (ank/ank) mice I. association of calcium hydroxyapatite deposition with inflammatory arthropathy. Arthritis Rheum. 27, 1411-1420 (1984).
118. Morava, E.et al.Autosomal recessive mental retardation, deafness, ankylosis, and mild hypophosphatemia associated with a novel ANKH mutation in a consanguineous family. J. Clin. Endocrinol. Metab. 96, E189-98 (2011).
119. Dudek, M.et al.The intervertebral disc contains intrinsic circadian clocks that are regulated by age and cytokines and linked to degeneration. Ann. Rheum. Dis. 76, 576-584 (2017).
120. Samsa W. E., Vasanji A., Midura, R. J. & Kondratov, R. V. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype. Bone 84, 194-203 (2016).
121. Siu, S. Y.et al. Variable patterns of ectopic mineralization in Enpp1 asj-2J mice, a model for generalized arterial calcification of infancy. Oncotarget 7, 83837-83842 (2016).
122. Ohnishi, T., Novais, E. J. & Risbud, M. V. Alterations in ECM signature underscore multiple sub-phenotypes of intervertebral disc degeneration. Matrix Biol. 6-7, 100036 (2020).
123. Borst, P., Váradi, A.& van de Wetering, K. PXE, a mysterious inborn error clarified. Trends Biochem. Sci. 44, 125-140 (2019).
124. Boneski, P. K.et al.Abcc6 null mice—a model for mineralization disorder PXE shows vertebral osteopenia without enhanced intervertebral disc calcification with aging. Front. Cell Dev. Biol. 3, 823249(2022).
125. Eanes E. D., Hailer A. W., Midura, R. J. & Hascall, V. C. Proteoglycan inhibition of calcium phosphate precipitation in liposomal suspensions. Glycobiology 2, 571-8 (1992).
126. Daniels, G.et al. Lack of the nucleoside transporter ENT1 results in the Augustine-null blood type and ectopic mineralization. Blood 125, 3651-3654 (2015).
127. Ii, H.et al. Disruption of biomineralization pathways in spinal tissues of a mouse model of diffuse idiopathic skeletal hyperostosis. Bone 90, 37-49 (2016).
128. Terkeltaub R.Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification. Purinergic Signal. 2, 371-377 (2006).
129. Zhu, Y., Sen, Gu,Y., Jiang, C. & Chen, L. Osteonectin regulates the extracellular matrix mineralization of osteoblasts through P38 signaling pathway. J. Cell Physiol. 235, 2220-2231 (2020).
130. Gruber, H. E.et al.Targeted deletion of the SPARC gene accelerates disc degeneration in the aging mouse. J. Histochem. Cytochem. 53, 1131-1138 (2005).
131. Millecamps I., Tajerian M., Sage, E. H. & Stone, L. S. Behavioral signs of chronic back pain in the SPARC-null mouse. Spine 36, 95-102 (2011).
132. Ni, S.et al.Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nat. Commun. 10, 5643(2019).
133. Lv, X.et al.Resveratrol‐enhanced SIRT1‐mediated osteogenesis in porous endplates attenuates low back pain and anxiety behaviors. FASEB J. 35, e21414(2021).
134. Barker, T. H.et al.SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J. Biol. Chem. 280, 36483-36493 (2005).
135. Wang, Y.et al.SPARC-related modular calcium binding 1 regulates aortic valve calcification by disrupting BMPR-II/p-p38 signalling. Cardiovasc. Res. 118, 913-928 (2022).
136. Suyama K., Silagi E. S., Choi H., Sakabe, K. & Mochida, J. Circadian factors BMAL1 and RORα control HIF-1α transcriptional activity in nucleus pulposus cells: implications in maintenance of intervertebral disc health. Oncotarget 7, 23056-23071 (2016).
137. Liang, Q.et al.Disruption of the mouse Bmal1 locus promotes heterotopic ossification with aging via TGF-beta/BMP signaling. J. Bone Min. Metab. 40, 40-55 (2022).
138. Yang, P.et al.The role of bone morphogenetic protein signaling in vascular calcification. Bone 141, 115542 (2020).
139. Melrose, J.et al.Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease. Eur. Spine J. 18, 479-489 (2009).
140. Brown, E. A.et al. FGF4 retrogene on CFA12 is responsible for chondrodystrophy and intervertebral disc disease in dogs. Proc. Natl. Acad. Sci. USA 114, 11476-11481 (2017).
141. Gruber H. E., Johnson T., Norton, H. J. & Hanley, E. N. The sand rat model for disc degeneration: radiologic characterization of age-related changes: crosssectional and prospective analyses. Spine 27, 230-234 (2002).
142. Nogueira-Barbosa, M. H., da Silva Herrero, C. F. P., Pasqualini, W. & Defino, H. L. A. Calcific discitis in an adult patient with intravertebral migration and spontaneous remission. Skeletal. Radiol. 42, 1161-1164 (2013).
143. Zehra, U.et al.Spinopelvic alignment predicts disc calcification, displacement, and Modic changes: evidence of an evolutionary etiology for clinically-relevant spinal phenotypes. JOR Spine 3, e1083 (2020).
144. Yao, G.et al.Characterization and predictive value of segmental curve flexibility in adolescent idiopathic scoliosis patients. Spine (Philos. Pa 1976) 42, 1622-1628 (2017).
145. Azizaddini S., Arefanian S., Redjal N., Walcott, B. P. & Mollahoseini, R. Adult acute calcific discitis confined to the nucleus pulposus in the cervical spine: case report. J. Neurosurg. Spine 19, 170-173 (2013).
146. Court, C., Mansour, E.& Bouthors, C. Thoracic disc herniation: surgical treatment. Orthop. Traumatol. Surg. Res. 104, S31-S40 (2018).
147. Roelz, R.et al.Giant central thoracic disc herniations: surgical outcome in 17 consecutive patients treated by mini-thoracotomy. Eur. Spine J. 25, 1443-1451 (2016).
148. Börm, W.et al.Surgical treatment of thoracic disc herniations via tailored posterior approaches. Eur. Spine J. 20, 1684-1690 (2011).
149. Malghem, J.et al.High signal intensity of intervertebral calcified disks on T1- weighted MR images resulting from fat content. Skeletal. Radiol. 34, 80-6 (2005).
150. Tyrrell P. N., Davies A. M., Evans N.& Jubb, R. W. Signal changes in the intervertebral discs on MRI of the thoracolumbar spine in ankylosing spondylitis. Clin. Radiol. 50, 377-83 (1995).
151. Zehra, U.et al.The association of lumbar intervertebral disc calcification on plain radiographs with the UTE Disc Sign on MRI. Eur. Spine J. 27, 1049-1057 (2018).
152. Orozco, L.et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 92, 822-828 (2011).
153. Vadalà G., Ambrosio L., Russo F., Papalia R.& Denaro, V. Interaction between mesenchymal stem cells and intervertebral disc microenvironment: from cell therapy to tissue engineering. Stem Cells Int. 2019, 2376172(2019).
154. Canseco J. A., Kanhere A. P., Schroeder G. D., Vaccaro A. R.& Kepler, C. K. Intradiscal therapies for lumbar degenerative disk disease. J. Am. Acad. Orthop. Surg. 30, e1084-e1094 (2022).
155. Muthu, S.et al.Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat. Rev. Rheumatol. 19, 403-416 (2023).
156. van Gool, S. A.et al. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage. PLoS One 7, e44561 (2012).
157. Vadalà, G.et al.Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J. Tissue Eng. Regen. Med. 6, 348-355 (2012).
158. Ou, Y.et al. Citrate attenuates vascular calcification in chronic renal failure rats. APMIS 125, 452-458 (2017).
159. Boleto, G., Allanore, Y. & Wipff, J. Ochronosis of the spine mimicking ankylosing spondylitis successfully treated with anakinra. Jt. Bone Spine 87, 368-369 (2020).
160. Ottaviani, S.et al. Efficacy of anakinra in calcium pyrophosphate crystal-induced arthritis: a report of 16 cases and review of the literature. Jt. Bone Spine 80, 178-182 (2013).
161. Persy V.,De Broe, M. & Ketteler, M. Bisphosphonates prevent experimental vascular calcification: treat the bone to cure the vessels? Kidney Int. 70, 1537-1538 (2006).
162. Lau, W. L.et al.Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 82, 1261-1270 (2012).
163. Spronk H. M.H. et al. Tissue-specific utilization of menaquinone-4 results in the prevention of arterial calcification in warfarin-treated rats. J. Vasc. Res. 40, 531-537 (2003).
164. Maniscalco, B. S. & Taylor, K. A. Calcification in coronary artery disease can be reversed by EDTA-tetracycline long-term chemotherapy. Pathophysiology 11, 95-101 (2004).
165. Guo, S.et al.The mechanisms and functions of GDF-5 in intervertebral disc degeneration. Orthop. Surg. 13, 734-741 (2021).
166. Zhang, Y.et al.Early onset of disc degeneration in SM/J mice is associated with changes in ion transport systems and fibrotic events. Matrix Biol. 70, 123-139 (2018).
167. Lappalainen A. K., Vaittinen E., Junnila J.& Laitinen-Vapaavuori, O. Intervertebral disc disease in Dachshunds radiographically screened for intervertebral disc calcifications. Acta Vet. Scand. 56, 89(2014).
168. Mogensen, M. S.et al. Genome-wide association study in dachshund: identification of a major locus affecting intervertebral disc calcification. J. Heredity 102, S81-S86 (2011).
169. Chang, E. Y., Du, J. & Chung, C. B. UTE imaging in the musculoskeletal system. J. Magn. Reson Imaging 41, 870-83 (2015).
170. Gates G. F.SPECT bone scanning of the spine. Semin. Nucl. Med. 28, 78-94 (1998).
Funding
Makarand V. Risbud (Makarand.Risbud@jefferson.edu)

Accesses

Citations

Detail

Sections
Recommended

/