Insights and implications of sexual dimorphism in osteoporosis

Yuan-Yuan Zhang1, Na Xie2, Xiao-Dong Sun2, Edouard C. Nice3, Yih-Cherng Liou4, Canhua Huang5, Huili Zhu6, Zhisen Shen7

Bone Research ›› 2024, Vol. 12 ›› Issue (0) : 8. DOI: 10.1038/s41413-023-00306-4
REVIEW ARTICLE

Insights and implications of sexual dimorphism in osteoporosis

  • Yuan-Yuan Zhang1, Na Xie2, Xiao-Dong Sun2, Edouard C. Nice3, Yih-Cherng Liou4, Canhua Huang5, Huili Zhu6, Zhisen Shen7
Author information +
History +

Abstract

Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.

Cite this article

Download citation ▾
Yuan-Yuan Zhang, Na Xie, Xiao-Dong Sun, Edouard C. Nice, Yih-Cherng Liou, Canhua Huang, Huili Zhu, Zhisen Shen. Insights and implications of sexual dimorphism in osteoporosis. Bone Research, 2024, 12(0): 8 https://doi.org/10.1038/s41413-023-00306-4

References

1. Yang, T. L.et al.A road map for understanding molecular and genetic determinants of osteoporosis. Nat. Rev. Endocrinol. 16, 91-103 (2020).
2. Liang B., Burley G., Lin S.& Shi, Y. C. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell. Mol. Biol. Lett. 27, 72(2022).
3. Leibson C. L., Tosteson A. N., Gabriel S. E., Ransom J. E.& Melton, L. J. Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J. Am. Geriatr. Soc. 50, 1644-1650 (2002).
4. Compston, J. E., McClung, M. R. & Leslie, W. D. Osteoporosis. Lancet 393, 364-376 (2019).
5. Pagnotti, G. M.et al.Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat. Rev. Endocrinol. 15, 339-355 (2019).
6. Cummings, S. R.et al.Goal-directed treatment for osteoporosis: a progress report from the ASBMR-NOF working group on goal-directed treatment for osteoporosis. J. Bone Miner. Res. 32, 3-10 (2017).
7. Patsch, J. M., Deutschmann, J.& Pietschmann, P. Gender aspects of osteoporosis and bone strength. Wien. Med. Wochenschr. 161, 117-123 (2011).
8. David, K.et al.Bone health in ageing men. Rev. Endocr. Metab. Disord. 23, 1173-1208 (2022).
9. Porcelli, T.et al.Management of endocrine disease: male osteoporosis: diagnosis and management - should the treatment and the target be the same as for female osteoporosis? Eur. J. Endocrinol. 183, R75-R93 (2020).
10. Vilaca, T., Eastell, R.& Schini, M. Osteoporosis in men. Lancet Diabetes Endocrinol. 10, 273-283 (2022).
11. Black D. M.& Rosen, C. J. Clinical practice. Postmenopausal osteoporosis. N. Engl. J. Med. 374, 254-262 (2016).
12. Sandovici I.,Fernandez-Twinn, D. S., Hufnagel, A., Constancia, M. & Ozanne, S. E. Sex differences in the intergenerational inheritance of metabolic traits. Nat. Metab. 4, 507-523 (2022).
13. Therkildsen, J.et al.Sex differences in the association between bone mineral density and coronary artery disease in patients referred for cardiac computed tomography. J. Clin. Densitom. 24, 55-66 (2021).
14. Mielke M. M.& Miller, V. M. Improving clinical outcomes through attention to sex and hormones in research. Nat. Rev. Endocrinol. 17, 625-635 (2021).
15. Merkatz R. B., Temple R., Subel S., Feiden K.& Kessler, D. A. Women in clinical trials of new drugs. A change in food and drug administration policy. the working group on women in clinical trials. N. Engl. J. Med. 329, 292-296 (1993).
16. Burra, P., Zanetto, A.& Germani, G. Sex bias in clinical trials in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 19, 413-414 (2022).
17. Almeida, M.et al.Estrogens and androgens in skeletal physiology and pathophysiology. Physiol. Rev. 97, 135-187 (2017).
18. Brown, C. Osteoporosis: staying strong. Nature 550, S15-S17 (2017).
19. Chandra A.& Rajawat, J. Skeletal aging and osteoporosis: mechanisms and therapeutics. Int. J. Mol. Sci. 22, 3553(2021).
20. Pignolo, R. J., Law, S. F.& Chandra, A. Bone aging, cellular senescence, and osteoporosis. JBMR Plus 5, e10488 (2021).
21. Ebeling, P. R.et al.Secondary osteoporosis. Endocr. Rev. 43, 240-313 (2022).
22. Compston, J.et al.UK clinical guideline for the prevention and treatment of osteoporosis. Arch. Osteoporos. 12, 43(2017).
23. Eastell, R.et al.Postmenopausal osteoporosis. Nat. Rev. Dis. Primers 2, 16069 (2016).
24. Svedbom, A.et al.Osteoporosis in the European Union: a compendium of country-specific reports. Arch. Osteoporos. 8, 137(2013).
25. Dennison, E. M.et al.Fracture risk following intermission of osteoporosis therapy. Osteoporos. Int. 30, 1733-1743 (2019).
26. Borgstrom, F.et al.Fragility fractures in Europe: burden, management and opportunities. Arch. Osteoporos. 15, 59(2020).
27. Haentjens, P.et al.Evidence from data searches and life-table analyses for gender-related differences in absolute risk of hip fracture after Colles' or spine fracture: Colles' fracture as an early and sensitive marker of skeletal fragility in white men. J. Bone Miner. Res. 19, 1933-1944 (2004).
28. Stevens J. A.& Rudd, R. A. The impact of decreasing U.S. hip fracture rates on future hip fracture estimates. Osteoporos. Int. 24, 2725-2728 (2013).
29. Wang Y. X.J. et al. Elderly men have much lower vertebral fracture risk than elderly women even at advanced age: the MrOS and MsOS (Hong Kong) year 14 follow-up radiology results. Arch. Osteoporos. 15, 176(2020).
30. Shim, Y. B.et al.Incidence and risk factors of subsequent osteoporotic fracture: a nationwide cohort study in South Korea. Arch. Osteoporos. 15, 180(2020).
31. Sun, J.et al. A vertebral skeletal stem cell lineage driving metastasis. Nature 621, 602-609 (2023).
32. Andrew, T. W.et al.Sexually dimorphic estrogen sensing in skeletal stem cells controls skeletal regeneration. Nat. Commun. 13, 6491(2022).
33. Peterle V. C.U. et al. Osteoporotic hip fracture-Comorbidities and factors associated with in-hospital mortality in the elderly: a nine-year cohort study in Brazil. PLoS One 17, e0272006 (2022).
34. Klop, C.et al. Mortality in British hip fracture patients, 2000-2010: a populationbased retrospective cohort study. Bone 66, 171-177 (2014).
35. Frost S. A., Nguyen N. D., Center J. R., Eisman, J. A. & Nguyen, T. V. Excess mortality attributable to hip-fracture: a relative survival analysis. Bone 56, 23-29 (2013).
36. Kannegaard P. N., van der Mark S., Eiken, P. & Abrahamsen, B. Excess mortality in men compared with women following a hip fracture. National analysis of comedications, comorbidity and survival. Age Ageing 39, 203-209 (2010).
37. Jung, H. S.et al.Incidence of subsequent osteoporotic fractures after distal radius fractures and mortality of the subsequent distal radius fractures: a retrospective analysis of claims data of the Korea National Health Insurance Service. Osteoporos. Int. 32, 293-299 (2021).
38. Hawley, S.et al.Anti-osteoporosis medication prescriptions and incidence of subsequent fracture among primary hip fracture patients in England and Wales: an interrupted time-series analysis. J. Bone Miner. Res. 31, 2008-2015 (2016).
39. Compston, J. Glucocorticoid-induced osteoporosis: an update. Endocrine 61, 7-16 (2018).
40. Chotiyarnwong P.& McCloskey, E. V. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat. Rev. Endocrinol. 16, 437-447 (2020).
41. Vestergaard, P., Rejnmark, L.& Mosekilde, L. Fracture risk associated with systemic and topical corticosteroids. J. Intern. Med. 257, 374-384 (2005).
42. Buckley L.& Humphrey, M. B. Glucocorticoid-induced osteoporosis. N. Engl. J. Med. 379, 2547-2556 (2018).
43. Briot K.& Roux, C. Glucocorticoid-induced osteoporosis. RMD Open 1, e000014 (2015).
44. Soen, S.et al.Epidemiology of glucocorticoid-induced osteoporosis and management of associated fracture risk in Japan. J. Bone Miner. Metab. 39, 1019-1030 (2021).
45. Leib E. S.& Winzenrieth, R. Bone status in glucocorticoid-treated men and women. Osteoporos. Int. 27, 39-48 (2016).
46. Herath M., Langdahl B., Ebeling P. R.& Milat, F. Challenges in the diagnosis and management of glucocorticoid-induced osteoporosis in younger and older adults. Clin. Endocrinol. (Oxf.) 96, 460-474 (2022).
47. Albaum J. M., Levesque L. E., Gershon A. S., Liu G.& Cadarette, S. M. Glucocorticoid-induced osteoporosis management among seniors, by year, sex, and indication, 1996-2012. Osteoporos. Int. 26, 2845-2852 (2015).
48. Ackermann, D.et al.Reference intervals for the urinary steroid metabolome: The impact of sex, age, day and night time on human adult steroidogenesis. PLoS One 14, e0214549 (2019).
49. Li J. X.& Cummins, C. L. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat. Rev. Endocrinol. 18, 540-557 (2022).
50. Kageyama, G.et al.Very high frequency of fragility fractures associated with high-dose glucocorticoids in postmenopausal women: a retrospective study. Bone Rep. 6, 3-8 (2017).
51. Popp A. W., Isenegger J., Buergi E. M., Buergi U.& Lippuner, K. Glucocorticosteroid-induced spinal osteoporosis: scientific update on pathophysiology and treatment. Eur. Spine J. 15, 1035-1049 (2006).
52. Liao, J. M.et al. Effects of stanozolol on bone mineral density and bone biomechanical properties of osteoporotic rats. Di Yi Jun Yi Da Xue Xue Bao 23, 1117-1120 (2003).
53. Tomic, D., Shaw, J. E.& Magliano, D. J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 18, 525-539 (2022).
54. Lin, H. H.et al.Association between type 2 diabetes and osteoporosis risk: a representative cohort study in Taiwan. PLoS One 16, e0254451 (2021).
55. Napoli, N.et al.Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol. 13, 208-219 (2017).
56. Jang, M.et al.Effect of duration of diabetes on bone mineral density: a population study on East Asian males. BMC Endocr. Disord. 18, 61(2018).
57. Si Y., Wang C., Guo Y., Xu, G. & Ma, Y. Prevalence of osteoporosis in patients with type 2 diabetes mellitus in the Chinese mainland: a systematic review and meta-analysis. Iran J. Public Health 48,1203-1214 (2019).
58. Liu X., Chen F., Liu L.& Zhang, Q. Prevalence of osteoporosis in patients with diabetes mellitus: a systematic review and meta-analysis of observational studies. BMC Endocr. Disord. 23, 1(2023).
59. Leidig-Bruckner, G. et al. Prevalence and determinants of osteoporosis in patients with type 1 and type 2 diabetes mellitus. BMC Endocr. Disord. 14, 33(2014).
60. Jeddi S., Yousefzadeh N., Kashfi K.& Ghasemi, A. Role of nitric oxide in type 1 diabetes-induced osteoporosis. Biochem. Pharmacol. 197, 114888(2022).
61. Huebschmann, A. G.et al. Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 62, 1761-1772 (2019).
62. Yuan, H.et al. Type 2 diabetes epidemic in East Asia: a 35-year systematic trend analysis. Oncotarget 9, 6718-6727 (2018).
63. Goossens, G. H., Jocken, J. W.E. & Blaak, E. E. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat. Rev. Endocrinol. 17, 47-66 (2021).
64. Lonardo, A.et al. Sex differences in nonalcoholic fatty liver disease: state of the art and identification of research gaps. Hepatology 70, 1457-1469 (2019).
65. Eckert, A. J.et al.Bone fractures in children and young adults with type 1 diabetes: age distribution, fracture location, and the role of glycemic. Control. J. Bone Miner. Res. 36, 2371-2380 (2021).
66. Sheu A., Greenfield J. R., White C. P.& Center, J. R. Contributors to impaired bone health in type 2 diabetes. Trends Endocrinol. Metab. 34, 34-48 (2023).
67. Khosla S., Samakkarnthai P., Monroe D. G.& Farr, J. N. Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 17, 685-697 (2021).
68. Sheu A., Bliuc D., Tran T., White C. P.& Center, J. R. Fractures in type 2 diabetes confer excess mortality: the Dubbo osteoporosis epidemiology study. Bone 159, 116373 (2022).
69. Martinez-Laguna, D. et al. Excess of all-cause mortality after a fracture in type 2 diabetic patients: a population-based cohort study. Osteoporos. Int. 28, 2573-2581 (2017).
70. Haentjens, P.et al.Meta-analysis: excess mortality after hip fracture among older women and men. Ann. Intern. Med. 152, 380-390 (2010).
71. Patel, V.et al.Diabetes-related complications and costs in medicare beneficiaries with comorbid rheumatoid arthritis and diabetes treated with abatacept versus other targeted DMARDs. Rheumatol Ther. 9, 1091-1107 (2022).
72. Sfeir J. G., Drake M. T., Khosla S.& Farr, J. N. Skeletal Aging. Mayo Clin. Proc. 97, 1194-1208 (2022).
73. Gasser, J. A. & Kneissel, M. Bone physiology and biology. In bone toxicology. Molecular and integrative toxicology; (eds Smith, S., Varela, Samadfam, R.) (Springer,2017).
74. Le, B. Q.et al.The components of bone and what they can teach us about regeneration. Materials (Basel) 11, 14(2018).
75. Manolagas S. C.From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr. Rev. 31, 266-300 (2010).
76. Chevalley T.& Rizzoli, R. Acquisition of peak bone mass. Best Pract. Res. Clin. Endocrinol. Metab. 36, 101616(2022).
77. Zhu X.& Zheng, H. Factors influencing peak bone mass gain. Front. Med. 15, 53-69 (2021).
78. Plotkin L. I.& Bruzzaniti, A. Molecular signaling in bone cells: regulation of cell differentiation and survival. Adv. Protein Chem. Struct. Biol. 116, 237-281 (2019).
79. Kitase Y.& Prideaux, M. Targeting osteocytes vs osteoblasts. Bone 170, 116724 (2023).
80. Qadir, A.et al.Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells. Int. J. Mol. Sci. 21, 349(2020).
81. Zupan, J.et al.Age-related alterations and senescence of mesenchymal stromal cells: implications for regenerative treatments of bones and joints. Mech. Ageing Dev. 198, 111539(2021).
82. Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337-342 (2003).
83. Lian, W. S.et al.MicroRNA-29a mitigates osteoblast senescence and counteracts bone loss through oxidation resistance-1 control of FoxO3 methylation. Antioxidants (Basel) 10, 1248(2021).
84. Weivoda M. M.& Bradley, E. W. Macrophages and bone remodeling. J. Bone Miner. Res. 38, 359-369 (2023).
85. Hu, Y.et al.Strategies of macrophages to maintain bone homeostasis and promote bone repair: a narrative review. J. Funct. Biomater. 14, 18(2022).
86. Loundagin L. L.& Cooper, D. M. L. Towards novel measurements of remodeling activity in cortical bone: implications for osteoporosis and related pharmaceutical treatments. Eur. Cell Mater. 43, 202-227 (2022).
87. Park-Min, K. H. Metabolic reprogramming in osteoclasts. Semin. Immunopathol. 41, 565-572 (2019).
88. Kim J. M., Lin C., Stavre Z., Greenblatt M. B.& Shim, J. H. Osteoblast-osteoclast communication and bone homeostasis. Cells 9, 2073 (2020).
89. Yao, Y.et al.The macrophage-osteoclast axis in osteoimmunity and osteorelated diseases. Front. Immunol. 12, 664871(2021).
90. Wang, L.et al.Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat. Commun. 11, 282(2020).
91. Robling A. G.& Bonewald, L. F. The osteocyte: new insights. Annu. Rev. Physiol. 82, 485-506 (2020).
92. Kuno M.Cooperative electrogenic proton transport pathways in the plasma membrane of the proton-secreting osteoclast. Pflugers Arch. 470, 851-866 (2018).
93. Teitelbaum, S. L. Bone resorption by osteoclasts. Science 289, 1504-1508 (2000).
94. Martin, T., Gooi, J. H.& Sims, N. A. Molecular mechanisms in coupling of bone formation to resorption. Crit. Rev. Eukaryot. Gene Expr. 19, 73-88 (2009).
95. Arai, A.et al.Beclin1 modulates bone homeostasis by regulating osteoclast and chondrocyte differentiation. J. Bone Miner. Res. 34, 1753-1766 (2019).
96. Udagawa, N.et al.Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab. 39, 19-26 (2021).
97. Dirckx N., Moorer M. C., Clemens T. L.& Riddle, R. C. The role of osteoblasts in energy homeostasis. Nat. Rev. Endocrinol. 15, 651-665 (2019).
98. Licini C.,Vitale-Brovarone, C. & Mattioli-Belmonte, M. Collagen and noncollagenous proteins molecular crosstalk in the pathophysiology of osteoporosis. Cytokine Growth Factor Rev. 49, 59-69 (2019).
99. Emmanuelle, N. E.et al.Critical role of estrogens on bone homeostasis in both male and female: from physiology to medical implications. Int. J. Mol. Sci. 22, 1568(2021).
100. Karsenty G.Osteocalcin: a multifaceted bone-derived hormone. Annu. Rev. Nutr. 43, 55-71 (2023).
101. Berger J. M.& Karsenty, G. Osteocalcin and the physiology of danger. FEBS Lett. 596, 665-680 (2022).
102. Wein M. N.& Kronenberg, H. M. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb. Perspect. Med. 8, a031237(2018).
103. Takegahara, N., Kim, H.& Choi, Y. RANKL biology. Bone 159, 116353 (2022).
104. Takashi Y.& Fukumoto, S. Phosphate-sensing and regulatory mechanism of FGF23 production. J. Endocrinol. Invest. 43, 877-883 (2020).
105. Hong, A. R.et al.Transformation of mature osteoblasts into bone lining cells and RNA sequencing-based transcriptome profiling of mouse bone during mechanical unloading. Endocrinol. Metab (Seoul) 35, 456-469 (2020).
106. Chen T., Wang Y., Hao Z., Hu Y.& Li, J. Parathyroid hormone and its related peptides in bone metabolism. Biochem. Pharmacol. 192, 114669(2021).
107. Wu, J.et al.Long noncoding RNA ZFAS1 suppresses osteogenic differentiation of bone marrow-derived mesenchymal stem cells by upregulating miR-499- EPHA5 axis. Mol. Cell Endocrinol. 539, 111490(2022).
108. Delgado-Calle, J. & Bellido, T. The osteocyte as a signaling cell. Physiol. Rev. 102, 379-410 (2022).
109. Kitaura, H.et al.Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int. J. Mol. Sci. 21, 5169(2020).
110. Zhang, B.et al.Magneto-mechanical stimulation modulates osteocyte fate via the ECM-integrin-CSK axis and wnt pathway. iScience 26, 107365 (2023).
111. Florio, M.et al.A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat. Commun. 7, 11505(2016).
112. Ulmer C. Z., Kritmetapak K., Singh R. J., Vesper H. W.& Kumar, R. Highresolution mass spectrometry for the measurement of PTH and PTH fragments: insights into PTH physiology and bioactivity. J. Am. Soc. Nephrol. 33, 1448-1458 (2022).
113. Bilezikian, J. P. Hypoparathyroidism. J. Clin. Endocrinol. Metab. 105, 1722-1736 (2020).
114. Arnold, A.et al.Hormonal regulation of biomineralization. Nat. Rev. Endocrinol. 17, 261-275 (2021).
115. Mannstadt, M.et al.Hypoparathyroidism. Nat. Rev. Dis. Primers 3, 17055 (2017).
116. Rubin, M. R.et al.PTH(1-84) administration reverses abnormal bone-remodeling dynamics and structure in hypoparathyroidism. J. Bone Miner. Res. 26, 2727-2736 (2011).
117. Zhang C.& Song, C. Combination therapy of PTH and antiresorptive drugs on osteoporosis: a review of treatment alternatives. Front. Pharmacol. 11, 607017(2020).
118. Jolette, J.et al.Comparing the incidence of bone tumors in rats chronically exposed to the selective PTH type 1 receptor agonist abaloparatide or PTH(1- 34). Regul. Toxicol. Pharmacol. 86, 356-365 (2017).
119. Estell E. G.& Rosen, C. J. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat. Rev. Endocrinol. 17, 31-46 (2021).
120. Massy Z. A.& Drueke, T. B. Gut microbiota orchestrates PTH action in bone: role of butyrate and T cells. Kidney Int. 98, 269-272 (2020).
121. Leitch, V. D., Bassett, J. H.D. & Williams, G. R. Role of thyroid hormones in craniofacial development. Nat. Rev. Endocrinol. 16, 147-164 (2020).
122. Huybrechts Y., Mortier G., Boudin E.& Van Hul, W. WNT signaling and bone: lessons from skeletal dysplasias and disorders. Front. Endocrinol. (Lausanne) 11, 165(2020).
123. Soos, B.et al.Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases. Nat. Rev. Rheumatol. 18, 249-257 (2022).
124. Houschyar, K. S.et al.Wnt pathway in bone repair and regeneration - what do we know so far. Front. Cell Dev. Biol. 6, 170(2018).
125. Baron R.& Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179-192 (2013).
126. Gong, Y.et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513-523 (2001).
127. Sutkeviciute I., Clark L. J., White A. D., Gardella T. J.& Vilardaga, J. P. PTH/PTHrP receptor signaling, allostery, and structures. Trends Endocrinol. Metab. 30, 860-874 (2019).
128. Xiao, L., Fei, Y.& Hurley, M. M. FGF2 crosstalk with Wnt signaling in mediating the anabolic action of PTH on bone formation. Bone Rep. 9, 136-144 (2018).
129. Kermgard, E., Chawla, N. K.& Wesseling-Perry, K. Gut microbiome, parathyroid hormone, and bone. Curr. Opin. Nephrol. Hypertens. 30, 418-423 (2021).
130. Yu, M.et al.PTH induces bone loss via microbial-dependent expansion of intestinal TNF+ T cells and Th17 cells. Nat. Commun. 11, 468(2020).
131. Li, J. Y.et al.Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota. J. Clin. Invest. 130, 1767-1781 (2020).
132. Sun, Z., Fan, J.& Wang, Y. X-chromosome inactivation and related diseases. Genet. Res. (Camb) 2022, 1391807(2022).
133. Migeon B. R.X-linked diseases: susceptible females. Genet. Med. 22, 1156-1174 (2020).
134. Makitie R. E., Costantini A., Kampe A., Alm J. J.& Makitie, O. New insights into monogenic causes of osteoporosis. Front. Endocrinol. (Lausanne) 10, 70(2019).
135. Costantini, A.et al.Early-onset osteoporosis: rare monogenic forms elucidate the complexity of disease pathogenesis beyond type I. Collagen. J. Bone Miner. Res. 37, 1623-1641 (2022).
136. Wolff, L.et al.Plastin 3 in health and disease: a matter of balance. Cell. Mol. Life Sci. 78, 5275-5301 (2021).
137. van Dijk, F. S.et al. PLS3 mutations in X-linked osteoporosis with fractures. N. Engl. J. Med. 369, 1529-1536 (2013).
138. Balasubramanian, M.et al. Novel PLS3 variants in X-linked osteoporosis: exploring bone material properties. Am. J. Med. Genet. A 176, 1578-1586 (2018).
139. Brlek, P.et al.X-Linked osteogenesis imperfecta possibly caused by a novel variant in PLS3. Genes (Basel) 12, 1851(2021).
140. Anagnostis P., Karras S., Paschou, S. A. & Goulis, D. G. Haemophilia A and B as a cause for secondary osteoporosis and increased fracture risk. Blood Coagul. Fibrinolysis 26, 599-603 (2015).
141. Wang H.& Bai, X. Mechanisms of bone remodeling disorder in hemophilia. Semin. Thromb. Hemost. 47, 43-52 (2021).
142. Rodriguez-Merchan, E. C. & Valentino, L. A. Increased bone resorption in hemophilia. Blood Rev. 33, 6-10 (2019).
143. Berntorp, E.et al.Haemophilia. Nat. Rev. Dis. Primers 7, 45 (2021).
144. Gebetsberger J., Schirmer M., Wurzer W. J.& Streif, W. Low bone mineral density in hemophiliacs. Front. Med. (Lausanne) 9, 794456(2022).
145. Abbasnezhad, A.et al.Serum concentrations of vitamin D, calcium, phosphorus and trace minerals in adults and children with haemophilia A: association with disease severity, quality of life, joint health and functional status. Int. J. Hematol. Oncol. Stem Cell Res. 14, 56-71 (2020).
146. Lin, X.et al.Pathogenesis and treatment of osteoporosis in patients with hemophilia. Arch. Osteoporos. 18, 17(2023).
147. Weitzmann, M. N.et al.Reduced bone formation in males and increased bone resorption in females drive bone loss in hemophilia A mice. Blood Adv. 3, 288-300 (2019).
148. Rocca, M. S.et al. The Klinefelter syndrome is associated with high recurrence of copy number variations on the X chromosome with a potential role in the clinical phenotype. Andrology 4, 328-334 (2016).
149. Bojesen, A.et al.Bone mineral density in Klinefelter syndrome is reduced and primarily determined by muscle strength and resorptive markers, but not directly by testosterone. Osteoporos. Int. 22, 1441-1450 (2011).
150. Ferlin, A.et al.Bone mass in subjects with Klinefelter syndrome: role of testosterone levels and androgen receptor gene CAG polymorphism. J. Clin. Endocrinol. Metab. 96, E739-E745 (2011).
151. Ye C.& Leslie, W. D. Fracture risk and assessment in adults with cancer. Osteoporos. Int. 34, 449-466 (2023).
152. Arnold A. P., Cassis L. A., Eghbali M., Reue K.& Sandberg, K. Sex hormones and sex chromosomes cause sex differences in the development of cardiovascular diseases. Arterioscler. Thromb. Vasc. Biol. 37, 746-756 (2017).
153. Morselli, E.et al.The effects of oestrogens and their receptors on cardiometabolic health. Nat. Rev. Endocrinol. 13, 352-364 (2017).
154. Karlamangla, A. S., Shieh, A. & Greendale, G. A. Hormones and bone loss across the menopause transition. Vitam Horm 115, 401-417 (2021).
155. Manolagas S. C.,O'Brien, C. A. & Almeida, M. The role of estrogen and androgen receptors in bone health and disease. Nat. Rev. Endocrinol. 9, 699-712 (2013).
156. Lambert, M. N. T. & Jeppesen, P. B. Isoflavones and bone health in perimenopausal and postmenopausal women. Curr. Opin. Clin. Nutr. Metab. Care 21, 475-480 (2018).
157. Decaroli, M. C. & Rochira, V. Aging and sex hormones in males. Virulence 8, 545-570 (2017).
158. Rochira V., Balestrieri A., Madeo B., Spaggiari A.& Carani, C. Congenital estrogen deficiency in men: a new syndrome with different phenotypes; clinical and therapeutic implications in men. Mol. Cell Endocrinol. 193, 19-28 (2002).
159. Rochira V.& Carani, C. Aromatase deficiency in men: a clinical perspective. Nat. Rev. Endocrinol. 5, 559-568 (2009).
160. Khosla S.& Hofbauer, L. C. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 5, 898-907 (2017).
161. Khosla, S.et al.Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J. Clin. Endocrinol. Metab. 83, 2266-2274 (1998).
162. Szulc P.Role of sex steroids hormones in the regulation of bone metabolism in men: evidence from clinical studies. Best Pract. Res. Clin. Endocrinol. Metab. 36, 101624(2022).
163. Laurent, M. R.et al. Age-related bone loss and sarcopenia in men. Maturitas 122, 51-56 (2019).
164. Levin, V. A., Jiang, X.& Kagan, R. Estrogen therapy for osteoporosis in the modern era. Osteoporos. Int. 29, 1049-1055 (2018).
165. Pietschmann P., Mechtcheriakova D., Meshcheryakova A., Foger-Samwald, U. & Ellinger, I. Immunology of osteoporosis: a mini-review. Gerontology 62, 128-137 (2016).
166. Amarasekara, D. S.et al.Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 18, e8(2018).
167. Yao, Z., Getting, S. J.& Locke, I. C. Regulation of TNF-induced osteoclast differentiation. Cells 11, 132 (2021).
168. Mishra, P., Davies, D. A.& Albensi, B. C. The interaction between NF-kappaB and estrogen in Alzheimer's disease. Mol. Neurobiol. 60, 1515-1526 (2023).
169. Krum S. A., Chang J., Miranda-Carboni, G. & Wang, C. Y. Novel functions for NFkappaB: inhibition of bone formation. Nat. Rev. Rheumatol. 6, 607-611 (2010).
170. Kameda, T.et al.Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J. Exp. Med. 186, 489-495 (1997).
171. Kousteni, S.et al. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298, 843-846 (2002).
172. Garcia, A. J.et al.ERalpha signaling regulates MMP3 expression to induce FasL cleavage and osteoclast apoptosis. J. Bone Miner. Res. 28, 283-290 (2013).
173. Krum, S. A.et al. Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J 27, 535-545 (2008).
174. Martin, A.et al. Estrogens antagonize RUNX2-mediated osteoblast-driven osteoclastogenesis through regulating RANKL membrane association. Bone 75, 96-104 (2015).
175. Kousteni, S.et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719-730 (2001).
176. Pantschenko, A. G.et al.Effect of osteoblast-targeted expression of bcl-2 in bone: differential response in male and female mice. J. Bone Miner. Res. 20, 1414-1429 (2005).
177. Xu, Y.et al.17 beta-Estradiol alleviates oxidative damage in osteoblasts by regulating miR-320/RUNX2 signaling pathway. J. Biosci. 46, 113(2021).
178. Tippen, S. P.et al.Age and sex effects on FGF23-mediated response to mild phosphate challenge. Bone 146, 115885 (2021).
179. Chen, P., Li, B.& Ou-Yang, L. Role of estrogen receptors in health and disease. Front. Endocrinol. (Lausanne) 13, 839005(2022).
180. Nilsson, S.et al.Mechanisms of estrogen action. Physiol. Rev. 81, 1535-1565 (2001).
181. Wang, N.et al.Mechanotransduction pathways in articular chondrocytes and the emerging role of estrogen receptor-alpha. Bone Res. 11, 13(2023).
182. Wehrle, E.et al.The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice. Dis. Model. Mech. 8, 93-104 (2015).
183. Pang X. G., Cong Y., Bao N. R., Li Y. G.& Zhao, J. N. Quercetin stimulates bone marrow mesenchymal stem cell differentiation through an estrogen receptormediated pathway. Biomed. Res. Int. 2018, 4178021(2018).
184. Bradford P. G., Gerace K. V., Roland R. L.& Chrzan, B. G. Estrogen regulation of apoptosis in osteoblasts. Physiol. Behav. 99, 181-185 (2010).
185. Hao, X. D.et al.Synthesis, estrogenic activity, and anti-osteoporosis effects in ovariectomized rats of resveratrol oligomer derivatives. Eur. J. Med. Chem. 102, 26-38 (2015).
186. Heino, T. J., Chagin, A. S.& Savendahl, L. The novel estrogen receptor G-proteincoupled receptor 30 is expressed in human bone. J. Endocrinol. 197, R1-R6 (2008).
187. Kim, N. R.et al.Estrogen receptor alpha signaling in extrahypothalamic neurons during late puberty decreases bone size and strength in female but not in male mice. FASEB J. 34, 7118-7126 (2020).
188. Steppe L., Bulow J., Tuckermann J., Ignatius A.& Haffner-Luntzer, M. Bone mass and osteoblast activity are sex-dependent in mice lacking the estrogen receptor alpha in chondrocytes and osteoblast progenitor cells. Int. J. Mol. Sci. 23, 2902(2022).
189. Windahl, S. H.et al. Estrogen receptor-alpha in osteocytes is important for trabecular bone formation in male mice. Proc. Natl. Acad. Sci. USA 110, 2294-2299 (2013).
190. Ikedo A.& Imai, Y. Estrogen receptor alpha in mature osteoblasts regulates the late stage of bone regeneration. Biochem. Biophys. Res. Commun. 559, 238-244 (2021).
191. Xiao, Y., Li, B.& Liu, J. MicroRNA?148a inhibition protects against ovariectomy?induced osteoporosis through PI3K/AKT signaling by estrogen receptor alpha. Mol. Med. Rep. 17, 7789-7796 (2018).
192. Swerdloff R. S., Dudley R. E., Page S. T., Wang C.& Salameh, W. A. Dihydrotestosterone: biochemistry, physiology, and clinical implications of elevated blood levels. Endocr. Rev. 38, 220-254 (2017).
193. Isidori, A. M.et al.Adult- and late-onset male hypogonadism: the clinical practice guidelines of the Italian Society of Andrology and Sexual Medicine (SIAMS) and the Italian Society of Endocrinology (SIE.). J. Endocrinol. Invest. 45, 2385-2403 (2022).
194. Chevalley, T.et al.Fracture prospectively recorded from prepuberty to young adulthood: are they markers of peak bone mass and strength in males? J. Bone Miner. Res. 32, 1963-1969 (2017).
195. Snyder, P. J.et al.Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: a controlled clinical trial. JAMA Intern. Med. 177, 471-479 (2017).
196. Zhang, Z., Kang, D.& Li, H. The e
Funding
Huili Zhu (hlzhu78@139.com) or Zhisen Shen (szs7216@163.com)

Accesses

Citations

Detail

Sections
Recommended

/