Enhancing biocomposite critical quality indicators (CQIs): the impact of biochar content in additive manufacturing

Nectarios Vidakis , Markos Petousis , Dimitrios Sagris , Constantine David , Nikolaos Mountakis , Mariza Spiridaki , Emmanuel Maravelakis , Costas Charitidis , Emmanuel Stratakis

Biochar ›› 2025, Vol. 7 ›› Issue (1) : 22

PDF
Biochar ›› 2025, Vol. 7 ›› Issue (1) : 22 DOI: 10.1007/s42773-024-00400-8
Original Research

Enhancing biocomposite critical quality indicators (CQIs): the impact of biochar content in additive manufacturing

Author information +
History +
PDF

Abstract

Biocomposite filaments for material extrusion (MEX) additive manufacturing, particularly those derived from agricultural biomass, have attracted significant research and industrial interest. Biochar is a well-documented reinforcement agent that is used in several polymeric matrices. However, systematic research efforts regarding the quality scores of parts built with MEX 3D printing with biochar-based filaments are marginal. Herein, the impact of biochar loading on the quality metrics of the five most popular polymers for MEX 3D printing (ABS, HDPE, PETG, PP, and PLA) is quantitatively examined in depth. Sophisticated and massive Non-Destructive Tests (NDTs) were conducted, and the impact of biochar loading on the critical quality indicators (CQIs), including porosity, dimensional conformity, and surface roughness, was documented. The quality scores for the biochar filler loading, also five in total, were statistically correlated with the corresponding reinforcement metrics for the five polymeric matrices. A statistically significant antagonistic interaction between the tensile strength course and porosity/dimensional deviation metrics, particularly for PETG, was observed. It can be concluded that the lowest porosity and dimensional deviation are associated with the highest strength. The 4 wt% biocomposite exhibited optimal quality performance in most polymers studied.

Graphical abstract

Cite this article

Download citation ▾
Nectarios Vidakis, Markos Petousis, Dimitrios Sagris, Constantine David, Nikolaos Mountakis, Mariza Spiridaki, Emmanuel Maravelakis, Costas Charitidis, Emmanuel Stratakis. Enhancing biocomposite critical quality indicators (CQIs): the impact of biochar content in additive manufacturing. Biochar, 2025, 7(1): 22 DOI:10.1007/s42773-024-00400-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou ΕV. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP) J Hazard Mater, 2007, 149(3): 536-542.

[2]

Afrose MF, Masood SH, Iovenitti P, Nikzad M, Sbarski I. Effects of part build orientations on fatigue behaviour of FDM-processed PLA material Progress Additive Manuf, 2016, 1(1–2): 21-28.

[3]

Ahmetli G, Kocaman S, Ozaytekin I, Bozkurt P. Epoxy composites based on inexpensive char filler obtained from plastic waste and natural resources Polym Compos, 2013, 34(4): 500-509.

[4]

Akhtar A, Sarmah AK. Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties Sci Total Environ, 2018, 616–617: 408-416.

[5]

Alauddin M, Choudhury IA, El Baradie MA, Hashmi MSJ. Plastics and their machining: a review J Mater Process Technol, 1995, 54(1–4): 40-46.

[6]

Almuallim B, Harun WSW, Al Rikabi IJ, Mohammed HA. Thermally conductive polymer nanocomposites for filament-based additive manufacturing J Mater Sci, 2022, 57(6): 3993-4019.

[7]

Andersen L, Wejdling A, Neidel T Plastic Waste–background report, 2015 Beau Vallon, Seychelles Nordic Council of Ministers

[8]

Anerao P, Kulkarni A, Munde Y, Shinde A, Das O. Biochar reinforced PLA composite for fused deposition modelling (FDM): a parametric study on mechanical performance Compos Part C Open Access, 2023, 12: 100406.

[9]

Asuero AG, Sayago A, González AG. The correlation coefficient: an overview Crit Rev Anal Chem, 2006, 36(1): 41-59.

[10]

Auras R, Harte B, Selke S. An overview of polylactides as packaging materials Macromol Biosci, 2004, 4(9): 835-864.

[11]

Autoeuropa V Maximizing production efficiency with 3D printed tools, jigs, and fixtures, 2017 Utrecht Ultimaker

[12]

Badia JD, Strömberg E, Karlsson S, Ribes-Greus A. The role of crystalline, mobile amorphous and rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate) (PET) Polym Degrad Stab, 2012, 97(1): 98-107.

[13]

Bałdowska-Witos P, Kruszelnicka W, Tomporowski A. Life cycle assessment of beverage bottles J Phys Conf Ser, 2020, 1426(1): 012038.

[14]

Bichu YM, Alwafi A, Liu X, Andrews J, Ludwig B, Bichu AY, Zou B. Advances in orthodontic clear aligner materials Bioact Mater, 2023, 22: 384-403.

[15]

Carneiro OS, Silva AF, Gomes R. Fused deposition modeling with polypropylene Mater Des, 2015, 83: 768-776.

[16]

Chacón JM, Caminero MA, García-Plaza E, Núñez PJ. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection Mater Des, 2017, 124: 143-157.

[17]

Chen L, Zhang Y, Wang L, Ruan S, Chen J, Li H, Yang J, Mechtcherine V, Tsang DCW. Biochar-augmented carbon-negative concrete Chem Eng J, 2022, 431: 133946.

[18]

Cosentino I, Restuccia L, Ferro GA, Tulliani J-M. Type of materials, pyrolysis conditions, carbon content and size dimensions: the parameters that influence the mechanical properties of biochar cement-based composites Theoret Appl Fract Mech, 2019, 103: 102261.

[19]

Couture A, Lebrun G, Laperrière L. Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers Compos Struct, 2016, 154: 286-295.

[20]

Das O, Sarmah AK, Bhattacharyya D. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites Waste Manag, 2015, 38: 132-140.

[21]

Das C, Tamrakar S, Kiziltas A, Xie X. Incorporation of Biochar to Improve Mechanical, Thermal and Electrical properties of Polymer composites Polym (Basel), 2021, 13(16): 2663.

[22]

Dhakal N, Wang X, Espejo C, Morina A, Emami N. Impact of processing defects on microstructure, surface quality, and tribological performance in 3D printed polymers J Mater Res Technol, 2023, 23: 1252-1272.

[23]

Drumright RE, Gruber PR, Henton DE. Polylactic acid technology Adv Mater, 2000, 12(23): 1841-1846.

[24]

Dupaix RB, Boyce MC. Finite strain behavior of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate)-glycol (PETG) Polym (Guildf), 2005, 46(13): 4827-4838.

[25]

Durgashyam K, Indra Reddy M, Balakrishna A, Satyanarayana K. Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method Mater Today Proc, 2019, 18: 2052-2059.

[26]

Dusunceli N, Colak OU. The effects of manufacturing techniques on viscoelastic and viscoplastic behavior of high density polyethylene (HDPE) Mater Des, 2008, 29(6): 1117-1124.

[27]

Elfaleh I, Abbassi F, Habibi M, Ahmad F, Guedri M, Nasri M, Garnier C. A comprehensive review of natural fibers and their composites: an eco-friendly alternative to conventional materials Results Eng, 2023, 19: 101271.

[28]

Falliano D, De Domenico D, Quattrocchi S, Cosenza P, Ricciardi G, Restuccia L, Ferro GA. Mechanical properties and carbon footprint of 3D-printable cement mortars with biochar additions MATEC Web Conf, 2020, 323: 01017.

[29]

George J, Jung D, Bhattacharyya D. Improvement of electrical and mechanical properties of PLA/PBAT composites using coconut shell biochar for antistatic applications Appl Sci, 2023, 13(2): 902.

[30]

Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made Sci Adv, 2017.

[31]

Giorcelli M, Khan A, Pugno NM, Rosso C, Tagliaferro A. Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties Biomass Bioenergy, 2019, 120: 219-223.

[32]

Guessasma S, Belhabib S, Nouri H. Printability and Tensile performance of 3D printed polyethylene terephthalate glycol using fused deposition modelling Polym (Basel), 2019, 11(7): 1220.

[33]

Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: an overview Prog Polym Sci, 2007, 32(4): 455-482.

[34]

Habel C, Schöttle M, Daab M, Eichstaedt NJ, Wagner D, Bakhshi H, Agarwal S, Horn MA, Breu J. High-barrier, biodegradable food packaging Macromol Mater Eng, 2018.

[35]

Hagemann N, Joseph S, Schmidt H-P, Kammann CI, Harter J, Borch T, Young RB, Varga K, Taherymoosavi S, Elliott KW, McKenna A, Albu M, Mayrhofer C, Obst M, Conte P, Dieguez-Alonso A, Orsetti S, Subdiaga E, Behrens S, Kappler A. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility Nat Commun, 2017, 8(1): 1089.

[36]

He M, Xu Z, Hou D, Gao B, Cao X, Ok YS, Rinklebe J, Bolan NS, Tsang DCW. Waste-derived biochar for water pollution control and sustainable development Nat Rev Earth Environ, 2022, 3(7): 444-460.

[37]

Ho M, Lau K, Wang H, Hui D. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles Compos B Eng, 2015, 81: 14-25.

[38]

Hussain T, Tausif M, Ashraf M. A review of progress in the dyeing of eco-friendly aliphatic polyester-based polylactic acid fabrics J Clean Prod, 2015, 108: 476-483.

[39]

Idrees M, Jeelani S, Rangari V. Three-dimensional-printed sustainable Biochar-recycled PET composites ACS Sustain Chem Eng, 2018, 6(11): 13940-13948.

[40]

Insight ace analytic (2024) Global biochar research report. In: https://www.insightaceanalytic.com/report/biochar-market/2094#:~:text=Biochar%20Market%20Size%20is%20valued,forecast%20period%20for%202023%2D2031

[41]

Jayakumar A, Morrisset D, Koutsomarkos V, Wurzer C, Hadden RM, Lawton L, Edwards C, Mašek O. Systematic evaluation of pyrolysis processes and biochar quality in the operation of low-cost flame curtain pyrolysis kiln for sustainable biochar production Curr Res Environ Sustain, 2023, 5: 100213.

[42]

Joseph PV, Rabello MS, Mattoso LHC, Joseph K, Thomas S. Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites Compos Sci Technol, 2002, 62(10–11): 1357-1372.

[43]

Kalsoom U, Peristyy A, Nesterenko PN, Paull B. A 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices RSC Adv, 2016, 6(44): 38140-38147.

[44]

Laureto JJ, Pearce JM. Anisotropic mechanical property variance between ASTM D638-14 type i and type iv fused filament fabricated specimens Polym Test, 2018, 68: 294-301.

[45]

Lee BH, Abdullah J, Khan ZA. Optimization of rapid prototyping parameters for production of flexible ABS object J Mater Process Technol, 2005, 169(1): 54-61.

[46]

Lee Rodgers J, Nicewander WA. Thirteen ways to look at the correlation coefficient Am Stat, 1988, 42(1): 59-66.

[47]

Leng L, Huang H. An overview of the effect of pyrolysis process parameters on biochar stability Bioresour Technol, 2018, 270: 627-642.

[48]

Li B, Zhang X, Zhang Q, Chen F, Fu Q. Synergistic enhancement in tensile strength and ductility of ABS by using recycled PETG plastic J Appl Polym Sci, 2009, 113(2): 1207-1215.

[49]

Li S, Xu Y, Jing X, Yilmaz G, Li D, Turng L-S. Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composites Compos B Eng, 2020, 196: 108120.

[50]

Lukkassen D, Meidell A Advanced materials and structures and their fabrication processes, 2003 Hin Narrik University College

[51]

Musa ET, Hamza A, Ahmed AS, Ishiuku US. Investigation of the mechanical and morphological properties of high-density polyethylene (Hdpe)/leather waste composites IOSR J Appl Chem, 2017, 10(01): 48-58.

[52]

Maljaee H, Madadi R, Paiva H, Tarelho L, Ferreira VM. Incorporation of biochar in cementitious materials: a roadmap of biochar selection Constr Build Mater, 2021, 283: 122757.

[53]

Mayakrishnan V, Mohamed JK, Selvaraj N, SenthilKumar D, Annadurai S. Effect of nano-biochar on mechanical, barrier and mulching properties of 3D printed thermoplastic polyurethane film Polym Bull, 2023, 80(6): 6725-6747.

[54]

Michailidis N, Petousis M, Moutsopoulou A, Argyros A, Ntintakis I, Papadakis V, Nasikas NK, Vidakis N. Engineering response of biomedical grade isotactic polypropylene reinforced with titanium nitride nanoparticles for material extrusion three-dimensional printing Eur J Mater, 2024, 4(1): 1-24.

[55]

Miller AT, Safranski DL, Smith KE, Sycks DG, Guldberg RE, Gall K. Fatigue of injection molded and 3D printed polycarbonate urethane in solution Polym (Guildf), 2017, 108: 121-134.

[56]

Minugu OP, Gujjala R, Shakuntala O, Manoj P, Chowdary MS. Effect of biomass derived biochar materials on mechanical properties of biochar epoxy composites Proc Inst Mech Eng C J Mech Eng Sci, 2021, 235(21): 5626-5638.

[57]

Mohamed OA, Masood SH, Bhowmik JL. Experimental investigation of the influence of fabrication conditions on dynamic viscoelastic properties of PC-ABS processed parts by FDM process IOP Conf Ser Mater Sci Eng, 2016, 149: 012122.

[58]

Murariu M, Dubois P. PLA composites: from production to properties Adv Drug Deliv Rev, 2016, 107: 17-46.

[59]

Nasikas NK, Petousis M, Papadakis V, Argyros A, Valsamos J, Gkagkanatsiou K, Sagris D, David C, Michailidis N, Maravelakis E, Vidakis N. Α comprehensive optimization course of antimony tin oxide nanofiller loading in polyamide 12: printability, quality assessment, and engineering response in additive manufacturing Nanomaterials, 2024.

[60]

Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges Compos B Eng, 2018, 143: 172-196.

[61]

Nikolopoulos CD, Baklezos AT, Kapetanakis TN, Vardiambasis IO, Tsubota T, Kalderis D. Characterization of the electromagnetic shielding effectiveness of biochar-based materials IEEE Access, 2023, 11: 6413-6420.

[62]

Nikzad M, Masood SH, Sbarski I. Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling Mater Des, 2011, 32(6): 3448-3456.

[63]

Paszkiewicz S, Szymczyk A, Pawlikowska D, Irska I, Taraghi I, Pilawka R, Gu J, Li X, Tu Y, Piesowicz E. Synthesis and characterization of poly(ethylene terephthalate-co-1,4-cyclohexanedimethylene terephtlatate)-block-poly(tetramethylene oxide) copolymers RSC Adv, 2017, 7(66): 41745-41754.

[64]

Pearson K, Galton F. VII. Note on regression and inheritance in the case of two parents Proc Royal Soc London, 1997, 58(347–352): 240-42.

[65]

Pervaiz M, Sain MM. Sheet-molded polyolefin natural fiber composites for automotive applications Macromol Mater Eng, 2003, 288(7): 553-557.

[66]

Petousis M, Maravelakis E, Kalderis D, Saltas V, Mountakis N, Spiridaki M, Bolanakis N, Argyros A, Papadakis V, Michailidis N, Vidakis N. Biochar for sustainable additive manufacturing: Thermal, mechanical, electrical, and rheological responses of polypropylene-biochar composites Biomass Bioenergy, 2024, 186: 107272.

[67]

Petousis M, Michailidis N, Saltas V, Papadakis V, Spiridaki M, Mountakis N, Argyros A, Valsamos J, Nasikas NK, Vidakis N. Mechanical and electrical properties of polyethylene terephthalate glycol/antimony tin oxide nanocomposites in material extrusion 3D printing Nanomaterials, 2024, 14(9): 761.

[68]

Petousis M, Sagris D, Papadakis V, Moutsopoulou A, Argyros A, David C, Valsamos J, Spiridaki M, Michailidis N, Vidakis N. Optimization course of titanium nitride nanofiller loading in high-density polyethylene: interpretation of reinforcement effects and performance in material extrusion 3D printing Polym (Basel), 2024.

[69]

Petrov P, Agzamova D, Pustovalov V, Zhikhareva E, Saprykin B, Chmutin I, Shmakova N. Research into the effect of the 3D-printing mode on changing the properties of PETG transparent plastic ESAFORM, 2021.

[70]

Postiglione G, Natale G, Griffini G, Levi M, Turri S. Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling Compos Part Appl Sci Manuf, 2015, 76: 110-114.

[71]

Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications Prog Polym Sci, 2010, 35(3): 338-356.

[72]

Sain M, Suhara P, Law S, Bouilloux A. Interface modification and mechanical properties of natural fiber-polyolefin composite products J Reinf Plast Compos, 2005, 24(2): 121-130.

[73]

Sajjadi B, Chen W-Y, Egiebor NO. A comprehensive review on physical activation of biochar for energy and environmental applications Rev Chem Eng, 2019, 35(6): 735-776.

[74]

Sawyer DJ. Bioprocessing – no longer a field of dreams Macromol Symp, 2003, 201(1): 271-282.

[75]

Sedgwick P. Pearson’s correlation coefficient BMJ Br Med J, 2012, 345: e4483.

[76]

Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology Acta Biomater, 2013, 9(3): 5521-5530.

[77]

Shanmugam V, Sreenivasan SN, Mensah RA, Försth M, Sas G, Hedenqvist MS, Neisiany RE, Tu Y, Das O. A review on combustion and mechanical behaviour of pyrolysis biochar Mater Today Commun, 2022, 31: 103629.

[78]

Shubhra QTH, Alam AKMM, Beg MDH, Khan MA, Gafur MA. Mechanical and degradation characteristics of natural silk and synthetic phosphate glass fiber reinforced polypropylene composites J Compos Mater, 2011, 45(12): 1305-1313.

[79]

Shubhra QT, Alam A, Quaiyyum M. Mechanical properties of polypropylene composites J Thermoplast Compos Mater, 2013, 26(3): 362-391.

[80]

Snowdon MR, Mohanty AK, Misra M. A study of carbonized lignin as an alternative to carbon black ACS Sustain Chem Eng, 2014, 2(5): 1257-1263.

[81]

Somani RH, Yang L, Sics I, Hsiao BS, Pogodina NV, Winter HH, Agarwal P, Fruitwala H, Tsou A. Orientation-induced crystallization in isotactic polypropylene melt by shear deformation Macromol Symp, 2002, 185(1): 105-117.

[82]

Szykiedans K, Credo W, Osiński D. Selected mechanical properties of PETG 3-D prints Procedia Eng, 2017, 177: 455-461.

[83]

Taib N-AAB, Rahman MR, Huda D, Kuok KK, Hamdan S, Bakri MK, Bin, Julaihi MRM, Bin, Khan A. A review on poly lactic acid (PLA) as a biodegradable polymer Polym Bull, 2023, 80(2): 1179-1213.

[84]

Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S. Highly oriented carbon fiber–polymer composites via additive manufacturing Compos Sci Technol, 2014, 105: 144-150.

[85]

Tian X, Liu T, Yang C, Wang Q, Li D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites Compos Part Appl Sci Manuf, 2016, 88: 198-205.

[86]

Torrado Perez AR, Roberson DA, Wicker RB. Fracture surface analysis of 3D-Printed tensile specimens of novel ABS-Based materials J Fail Anal Prev, 2014, 14(3): 343-353.

[87]

Tsubota T, Tsuchiya S, Kusumoto T, Kalderis D. Assessment of Biochar produced by Flame-Curtain Pyrolysis as a Precursor for the development of an efficient Electric double-layer Capacitor Energies (Basel), 2021, 14(22): 7671.

[88]

Vidakis N, David C, Petousis M, Sagris D, Mountakis N. Optimization of key quality indicators in material extrusion 3D printing of acrylonitrile butadiene styrene: the impact of critical process control parameters on the surface roughness, dimensional accuracy, and porosity Mater Today Commun, 2023.

[89]

Vidakis N, Kalderis D, Petousis M, Maravelakis E, Mountakis N, Bolanakis N, Papadakis V. Biochar filler in MEX and VPP additive manufacturing: characterization and reinforcement effects in polylactic acid and standard grade resin matrices Biochar, 2023, 5(1): 39.

[90]

Vidakis N, Moutsopoulou A, Petousis M, Michailidis N, Charou C, Papadakis V, Mountakis N, Dimitriou E, Argyros A. Rheology and thermomechanical evaluation of additively manufactured acrylonitrile butadiene styrene (ABS) with optimized tungsten carbide (WC) nano-ceramic content Ceram Int, 2023.

[91]

Vidakis N, Petousis M, Michailidis N, Mountakis N, Argyros A, Spiridaki M, Moutsopoulou A, Papadakis V, Charitidis C. High-density polyethylene/carbon black composites in material extrusion additive manufacturing: conductivity, thermal, rheological, and mechanical responses Polymers (Basel), 2023, 15: 4717.

[92]

Vidakis N, Petousis M, Michailidis N, Nasikas N, Papadakis V, Argyros A, Mountakis N, Charou C, Moutsopoulou A. Optimizing Titanium Carbide (TiC) ceramic nanofiller loading in isotactic polypropylene for MEX additive manufacturing: mechano-thermal and rheology aspects Mater Today Commun, 2023.

[93]

Vidakis N, Kalderis D, Michailidis N, Papadakis V, Mountakis N, Argyros A, Spiridaki M, Moutsopoulou A, Petousis M. Environmentally friendly polylactic acid/ferronickel slag composite filaments for material extrusion 3D printing: a comprehensive optimization of the filler content Mater Today Sustain, 2024.

[94]

Vidakis N, Michailidis N, Petousis M, Nasikas NK, Saltas V, Papadakis V, Mountakis N, Argyros A, Spiridaki M, Valsamos I. Multifunctional HDPE/Cu biocidal nanocomposites for MEX additive manufactured parts: perspectives for the defense industry Def Technol, 2024.

[95]

Vidakis N, Petousis M, David C, Nasikas NK, Sagris D, Mountakis N, Spiridaki M, Moutsopoulou A, Stratakis E. Critical quality indicators of high-performance polyetherimide (ULTEM) over the MEX 3D printing key generic control parameters: prospects for personalized equipment in the defense industry Def Technol, 2024.

[96]

Vidakis N, Petousis M, Kalderis D, Michailidis N, Maravelakis E, Saltas V, Bolanakis N, Papadakis V, Argyros A, Mountakis N, Spiridaki M. A coherent engineering assessment of ABS/biochar biocomposites in MEX 3D additive manufacturing Heliyon, 2024, 10(11): e32094.

[97]

Vidakis N, Petousis M, Kalderis D, Michailidis N, Maravelakis E, Saltas V, Bolanakis N, Papadakis V, Spiridaki M, Argyros A. Reinforced HDPE with optimized biochar content for material extrusion additive manufacturing: morphological, rheological, electrical, and thermomechanical insights Biochar, 2024, 6(1): 37.

[98]

Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol, 2003, 63(9): 1259-1264.

[99]

Wang X, Zhao L, Fuh JYH, Lee HP. Effect of porosity on mechanical properties of 3D printed polymers: experiments and micromechanical modeling based on X-ray computed tomography analysis Polym (Basel), 2019.

[100]

Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z. 3D Printable graphene composite Sci Rep, 2015, 5(1): 11181.

[101]

Yan C, Kleiner C, Tabigue A, Shah V, Sacks G, Shah D, DeStefano V. PETG: applications in modern medicine Eng Regen, 2024, 5(1): 45-55.

[102]

Yasmin A, Daniel IM. Mechanical and thermal properties of graphite platelet/epoxy composites Polym (Guildf), 2004, 45(24): 8211-8219.

[103]

Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review Bioact Mater, 2019, 4: 56-70.

[104]

Zhang Q, Zhang D, Xu H, Lu W, Ren X, Cai H, Lei H, Huo E, Zhao Y, Qian M, Lin X, Villota EM, Mateo W. Biochar filled high-density polyethylene composites with excellent properties: towards maximizing the utilization of agricultural wastes Ind Crops Prod, 2020, 146: 112185.

[105]

Zhang Y, He M, Wang L, Yan J, Ma B, Zhu X, Ok YS, Mechtcherine V, Tsang DCW. Biochar as construction materials for achieving carbon neutrality Biochar, 2022, 4(1): 59.

[106]

Ziemian S, Okwara M, Ziemian CW. Tensile and fatigue behavior of layered acrylonitrile butadiene styrene Rapid Prototyp J, 2015, 21(3): 270-278.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

276

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/