Enhancing biocomposite critical quality indicators (CQIs): the impact of biochar content in additive manufacturing

Nectarios Vidakis, Markos Petousis, Dimitrios Sagris, Constantine David, Nikolaos Mountakis, Mariza Spiridaki, Emmanuel Maravelakis, Costas Charitidis, Emmanuel Stratakis

Biochar ›› 2025, Vol. 7 ›› Issue (1) : 22.

Biochar ›› 2025, Vol. 7 ›› Issue (1) : 22. DOI: 10.1007/s42773-024-00400-8
Original Research

Enhancing biocomposite critical quality indicators (CQIs): the impact of biochar content in additive manufacturing

Author information +
History +

Abstract

Biocomposite filaments for material extrusion (MEX) additive manufacturing, particularly those derived from agricultural biomass, have attracted significant research and industrial interest. Biochar is a well-documented reinforcement agent that is used in several polymeric matrices. However, systematic research efforts regarding the quality scores of parts built with MEX 3D printing with biochar-based filaments are marginal. Herein, the impact of biochar loading on the quality metrics of the five most popular polymers for MEX 3D printing (ABS, HDPE, PETG, PP, and PLA) is quantitatively examined in depth. Sophisticated and massive Non-Destructive Tests (NDTs) were conducted, and the impact of biochar loading on the critical quality indicators (CQIs), including porosity, dimensional conformity, and surface roughness, was documented. The quality scores for the biochar filler loading, also five in total, were statistically correlated with the corresponding reinforcement metrics for the five polymeric matrices. A statistically significant antagonistic interaction between the tensile strength course and porosity/dimensional deviation metrics, particularly for PETG, was observed. It can be concluded that the lowest porosity and dimensional deviation are associated with the highest strength. The 4 wt% biocomposite exhibited optimal quality performance in most polymers studied.

Graphical abstract

Cite this article

Download citation ▾
Nectarios Vidakis, Markos Petousis, Dimitrios Sagris, Constantine David, Nikolaos Mountakis, Mariza Spiridaki, Emmanuel Maravelakis, Costas Charitidis, Emmanuel Stratakis. Enhancing biocomposite critical quality indicators (CQIs): the impact of biochar content in additive manufacturing. Biochar, 2025, 7(1): 22 https://doi.org/10.1007/s42773-024-00400-8

References

[]
Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou ΕV. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP) J Hazard Mater, 2007, 149(3): 536-542.
CrossRef Google scholar
[]
Afrose MF, Masood SH, Iovenitti P, Nikzad M, Sbarski I. Effects of part build orientations on fatigue behaviour of FDM-processed PLA material Progress Additive Manuf, 2016, 1(1–2): 21-28.
CrossRef Google scholar
[]
Ahmetli G, Kocaman S, Ozaytekin I, Bozkurt P. Epoxy composites based on inexpensive char filler obtained from plastic waste and natural resources Polym Compos, 2013, 34(4): 500-509.
CrossRef Google scholar
[]
Akhtar A, Sarmah AK. Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties Sci Total Environ, 2018, 616–617: 408-416.
CrossRef Google scholar
[]
Alauddin M, Choudhury IA, El Baradie MA, Hashmi MSJ. Plastics and their machining: a review J Mater Process Technol, 1995, 54(1–4): 40-46.
CrossRef Google scholar
[]
Almuallim B, Harun WSW, Al Rikabi IJ, Mohammed HA. Thermally conductive polymer nanocomposites for filament-based additive manufacturing J Mater Sci, 2022, 57(6): 3993-4019.
CrossRef Google scholar
[]
Andersen L, Wejdling A, Neidel T Plastic Waste–background report, 2015 Beau Vallon, Seychelles Nordic Council of Ministers
[]
Anerao P, Kulkarni A, Munde Y, Shinde A, Das O. Biochar reinforced PLA composite for fused deposition modelling (FDM): a parametric study on mechanical performance Compos Part C Open Access, 2023, 12: 100406.
CrossRef Google scholar
[]
Asuero AG, Sayago A, González AG. The correlation coefficient: an overview Crit Rev Anal Chem, 2006, 36(1): 41-59.
CrossRef Google scholar
[]
Auras R, Harte B, Selke S. An overview of polylactides as packaging materials Macromol Biosci, 2004, 4(9): 835-864.
CrossRef Google scholar
[]
Autoeuropa V Maximizing production efficiency with 3D printed tools, jigs, and fixtures, 2017 Utrecht Ultimaker
[]
Badia JD, Strömberg E, Karlsson S, Ribes-Greus A. The role of crystalline, mobile amorphous and rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate) (PET) Polym Degrad Stab, 2012, 97(1): 98-107.
CrossRef Google scholar
[]
Bałdowska-Witos P, Kruszelnicka W, Tomporowski A. Life cycle assessment of beverage bottles J Phys Conf Ser, 2020, 1426(1): 012038.
CrossRef Google scholar
[]
Bichu YM, Alwafi A, Liu X, Andrews J, Ludwig B, Bichu AY, Zou B. Advances in orthodontic clear aligner materials Bioact Mater, 2023, 22: 384-403.
CrossRef Google scholar
[]
Carneiro OS, Silva AF, Gomes R. Fused deposition modeling with polypropylene Mater Des, 2015, 83: 768-776.
CrossRef Google scholar
[]
Chacón JM, Caminero MA, García-Plaza E, Núñez PJ. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection Mater Des, 2017, 124: 143-157.
CrossRef Google scholar
[]
Chen L, Zhang Y, Wang L, Ruan S, Chen J, Li H, Yang J, Mechtcherine V, Tsang DCW. Biochar-augmented carbon-negative concrete Chem Eng J, 2022, 431: 133946.
CrossRef Google scholar
[]
Cosentino I, Restuccia L, Ferro GA, Tulliani J-M. Type of materials, pyrolysis conditions, carbon content and size dimensions: the parameters that influence the mechanical properties of biochar cement-based composites Theoret Appl Fract Mech, 2019, 103: 102261.
CrossRef Google scholar
[]
Couture A, Lebrun G, Laperrière L. Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers Compos Struct, 2016, 154: 286-295.
CrossRef Google scholar
[]
Das O, Sarmah AK, Bhattacharyya D. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites Waste Manag, 2015, 38: 132-140.
CrossRef Google scholar
[]
Das C, Tamrakar S, Kiziltas A, Xie X. Incorporation of Biochar to Improve Mechanical, Thermal and Electrical properties of Polymer composites Polym (Basel), 2021, 13(16): 2663.
CrossRef Google scholar
[]
Dhakal N, Wang X, Espejo C, Morina A, Emami N. Impact of processing defects on microstructure, surface quality, and tribological performance in 3D printed polymers J Mater Res Technol, 2023, 23: 1252-1272.
CrossRef Google scholar
[]
Drumright RE, Gruber PR, Henton DE. Polylactic acid technology Adv Mater, 2000, 12(23): 1841-1846.
CrossRef Google scholar
[]
Dupaix RB, Boyce MC. Finite strain behavior of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate)-glycol (PETG) Polym (Guildf), 2005, 46(13): 4827-4838.
CrossRef Google scholar
[]
Durgashyam K, Indra Reddy M, Balakrishna A, Satyanarayana K. Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method Mater Today Proc, 2019, 18: 2052-2059.
CrossRef Google scholar
[]
Dusunceli N, Colak OU. The effects of manufacturing techniques on viscoelastic and viscoplastic behavior of high density polyethylene (HDPE) Mater Des, 2008, 29(6): 1117-1124.
CrossRef Google scholar
[]
Elfaleh I, Abbassi F, Habibi M, Ahmad F, Guedri M, Nasri M, Garnier C. A comprehensive review of natural fibers and their composites: an eco-friendly alternative to conventional materials Results Eng, 2023, 19: 101271.
CrossRef Google scholar
[]
Falliano D, De Domenico D, Quattrocchi S, Cosenza P, Ricciardi G, Restuccia L, Ferro GA. Mechanical properties and carbon footprint of 3D-printable cement mortars with biochar additions MATEC Web Conf, 2020, 323: 01017.
CrossRef Google scholar
[]
George J, Jung D, Bhattacharyya D. Improvement of electrical and mechanical properties of PLA/PBAT composites using coconut shell biochar for antistatic applications Appl Sci, 2023, 13(2): 902.
CrossRef Google scholar
[]
Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made Sci Adv, 2017.
CrossRef Google scholar
[]
Giorcelli M, Khan A, Pugno NM, Rosso C, Tagliaferro A. Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties Biomass Bioenergy, 2019, 120: 219-223.
CrossRef Google scholar
[]
Guessasma S, Belhabib S, Nouri H. Printability and Tensile performance of 3D printed polyethylene terephthalate glycol using fused deposition modelling Polym (Basel), 2019, 11(7): 1220.
CrossRef Google scholar
[]
Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: an overview Prog Polym Sci, 2007, 32(4): 455-482.
CrossRef Google scholar
[]
Habel C, Schöttle M, Daab M, Eichstaedt NJ, Wagner D, Bakhshi H, Agarwal S, Horn MA, Breu J. High-barrier, biodegradable food packaging Macromol Mater Eng, 2018.
CrossRef Google scholar
[]
Hagemann N, Joseph S, Schmidt H-P, Kammann CI, Harter J, Borch T, Young RB, Varga K, Taherymoosavi S, Elliott KW, McKenna A, Albu M, Mayrhofer C, Obst M, Conte P, Dieguez-Alonso A, Orsetti S, Subdiaga E, Behrens S, Kappler A. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility Nat Commun, 2017, 8(1): 1089.
CrossRef Google scholar
[]
He M, Xu Z, Hou D, Gao B, Cao X, Ok YS, Rinklebe J, Bolan NS, Tsang DCW. Waste-derived biochar for water pollution control and sustainable development Nat Rev Earth Environ, 2022, 3(7): 444-460.
CrossRef Google scholar
[]
Ho M, Lau K, Wang H, Hui D. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles Compos B Eng, 2015, 81: 14-25.
CrossRef Google scholar
[]
Hussain T, Tausif M, Ashraf M. A review of progress in the dyeing of eco-friendly aliphatic polyester-based polylactic acid fabrics J Clean Prod, 2015, 108: 476-483.
CrossRef Google scholar
[]
Idrees M, Jeelani S, Rangari V. Three-dimensional-printed sustainable Biochar-recycled PET composites ACS Sustain Chem Eng, 2018, 6(11): 13940-13948.
CrossRef Google scholar
[]
[]
Jayakumar A, Morrisset D, Koutsomarkos V, Wurzer C, Hadden RM, Lawton L, Edwards C, Mašek O. Systematic evaluation of pyrolysis processes and biochar quality in the operation of low-cost flame curtain pyrolysis kiln for sustainable biochar production Curr Res Environ Sustain, 2023, 5: 100213.
CrossRef Google scholar
[]
Joseph PV, Rabello MS, Mattoso LHC, Joseph K, Thomas S. Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites Compos Sci Technol, 2002, 62(10–11): 1357-1372.
CrossRef Google scholar
[]
Kalsoom U, Peristyy A, Nesterenko PN, Paull B. A 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices RSC Adv, 2016, 6(44): 38140-38147.
CrossRef Google scholar
[]
Laureto JJ, Pearce JM. Anisotropic mechanical property variance between ASTM D638-14 type i and type iv fused filament fabricated specimens Polym Test, 2018, 68: 294-301.
CrossRef Google scholar
[]
Lee BH, Abdullah J, Khan ZA. Optimization of rapid prototyping parameters for production of flexible ABS object J Mater Process Technol, 2005, 169(1): 54-61.
CrossRef Google scholar
[]
Lee Rodgers J, Nicewander WA. Thirteen ways to look at the correlation coefficient Am Stat, 1988, 42(1): 59-66.
CrossRef Google scholar
[]
Leng L, Huang H. An overview of the effect of pyrolysis process parameters on biochar stability Bioresour Technol, 2018, 270: 627-642.
CrossRef Google scholar
[]
Li B, Zhang X, Zhang Q, Chen F, Fu Q. Synergistic enhancement in tensile strength and ductility of ABS by using recycled PETG plastic J Appl Polym Sci, 2009, 113(2): 1207-1215.
CrossRef Google scholar
[]
Li S, Xu Y, Jing X, Yilmaz G, Li D, Turng L-S. Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composites Compos B Eng, 2020, 196: 108120.
CrossRef Google scholar
[]
Lukkassen D, Meidell A Advanced materials and structures and their fabrication processes, 2003 Hin Narrik University College
[]
Musa ET, Hamza A, Ahmed AS, Ishiuku US. Investigation of the mechanical and morphological properties of high-density polyethylene (Hdpe)/leather waste composites IOSR J Appl Chem, 2017, 10(01): 48-58.
CrossRef Google scholar
[]
Maljaee H, Madadi R, Paiva H, Tarelho L, Ferreira VM. Incorporation of biochar in cementitious materials: a roadmap of biochar selection Constr Build Mater, 2021, 283: 122757.
CrossRef Google scholar
[]
Mayakrishnan V, Mohamed JK, Selvaraj N, SenthilKumar D, Annadurai S. Effect of nano-biochar on mechanical, barrier and mulching properties of 3D printed thermoplastic polyurethane film Polym Bull, 2023, 80(6): 6725-6747.
CrossRef Google scholar
[]
Michailidis N, Petousis M, Moutsopoulou A, Argyros A, Ntintakis I, Papadakis V, Nasikas NK, Vidakis N. Engineering response of biomedical grade isotactic polypropylene reinforced with titanium nitride nanoparticles for material extrusion three-dimensional printing Eur J Mater, 2024, 4(1): 1-24.
CrossRef Google scholar
[]
Miller AT, Safranski DL, Smith KE, Sycks DG, Guldberg RE, Gall K. Fatigue of injection molded and 3D printed polycarbonate urethane in solution Polym (Guildf), 2017, 108: 121-134.
CrossRef Google scholar
[]
Minugu OP, Gujjala R, Shakuntala O, Manoj P, Chowdary MS. Effect of biomass derived biochar materials on mechanical properties of biochar epoxy composites Proc Inst Mech Eng C J Mech Eng Sci, 2021, 235(21): 5626-5638.
CrossRef Google scholar
[]
Mohamed OA, Masood SH, Bhowmik JL. Experimental investigation of the influence of fabrication conditions on dynamic viscoelastic properties of PC-ABS processed parts by FDM process IOP Conf Ser Mater Sci Eng, 2016, 149: 012122.
CrossRef Google scholar
[]
Murariu M, Dubois P. PLA composites: from production to properties Adv Drug Deliv Rev, 2016, 107: 17-46.
CrossRef Google scholar
[]
Nasikas NK, Petousis M, Papadakis V, Argyros A, Valsamos J, Gkagkanatsiou K, Sagris D, David C, Michailidis N, Maravelakis E, Vidakis N. Α comprehensive optimization course of antimony tin oxide nanofiller loading in polyamide 12: printability, quality assessment, and engineering response in additive manufacturing Nanomaterials, 2024.
CrossRef Google scholar
[]
Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges Compos B Eng, 2018, 143: 172-196.
CrossRef Google scholar
[]
Nikolopoulos CD, Baklezos AT, Kapetanakis TN, Vardiambasis IO, Tsubota T, Kalderis D. Characterization of the electromagnetic shielding effectiveness of biochar-based materials IEEE Access, 2023, 11: 6413-6420.
CrossRef Google scholar
[]
Nikzad M, Masood SH, Sbarski I. Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling Mater Des, 2011, 32(6): 3448-3456.
CrossRef Google scholar
[]
Paszkiewicz S, Szymczyk A, Pawlikowska D, Irska I, Taraghi I, Pilawka R, Gu J, Li X, Tu Y, Piesowicz E. Synthesis and characterization of poly(ethylene terephthalate-co-1,4-cyclohexanedimethylene terephtlatate)-block-poly(tetramethylene oxide) copolymers RSC Adv, 2017, 7(66): 41745-41754.
CrossRef Google scholar
[]
Pearson K, Galton F. VII. Note on regression and inheritance in the case of two parents Proc Royal Soc London, 1997, 58(347–352): 240-42.
CrossRef Google scholar
[]
Pervaiz M, Sain MM. Sheet-molded polyolefin natural fiber composites for automotive applications Macromol Mater Eng, 2003, 288(7): 553-557.
CrossRef Google scholar
[]
Petousis M, Maravelakis E, Kalderis D, Saltas V, Mountakis N, Spiridaki M, Bolanakis N, Argyros A, Papadakis V, Michailidis N, Vidakis N. Biochar for sustainable additive manufacturing: Thermal, mechanical, electrical, and rheological responses of polypropylene-biochar composites Biomass Bioenergy, 2024, 186: 107272.
CrossRef Google scholar
[]
Petousis M, Michailidis N, Saltas V, Papadakis V, Spiridaki M, Mountakis N, Argyros A, Valsamos J, Nasikas NK, Vidakis N. Mechanical and electrical properties of polyethylene terephthalate glycol/antimony tin oxide nanocomposites in material extrusion 3D printing Nanomaterials, 2024, 14(9): 761.
CrossRef Google scholar
[]
Petousis M, Sagris D, Papadakis V, Moutsopoulou A, Argyros A, David C, Valsamos J, Spiridaki M, Michailidis N, Vidakis N. Optimization course of titanium nitride nanofiller loading in high-density polyethylene: interpretation of reinforcement effects and performance in material extrusion 3D printing Polym (Basel), 2024.
CrossRef Google scholar
[]
Petrov P, Agzamova D, Pustovalov V, Zhikhareva E, Saprykin B, Chmutin I, Shmakova N. Research into the effect of the 3D-printing mode on changing the properties of PETG transparent plastic ESAFORM, 2021.
CrossRef Google scholar
[]
Postiglione G, Natale G, Griffini G, Levi M, Turri S. Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling Compos Part Appl Sci Manuf, 2015, 76: 110-114.
CrossRef Google scholar
[]
Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications Prog Polym Sci, 2010, 35(3): 338-356.
CrossRef Google scholar
[]
Sain M, Suhara P, Law S, Bouilloux A. Interface modification and mechanical properties of natural fiber-polyolefin composite products J Reinf Plast Compos, 2005, 24(2): 121-130.
CrossRef Google scholar
[]
Sajjadi B, Chen W-Y, Egiebor NO. A comprehensive review on physical activation of biochar for energy and environmental applications Rev Chem Eng, 2019, 35(6): 735-776.
CrossRef Google scholar
[]
Sawyer DJ. Bioprocessing – no longer a field of dreams Macromol Symp, 2003, 201(1): 271-282.
CrossRef Google scholar
[]
Sedgwick P. Pearson’s correlation coefficient BMJ Br Med J, 2012, 345: e4483.
CrossRef Google scholar
[]
Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology Acta Biomater, 2013, 9(3): 5521-5530.
CrossRef Google scholar
[]
Shanmugam V, Sreenivasan SN, Mensah RA, Försth M, Sas G, Hedenqvist MS, Neisiany RE, Tu Y, Das O. A review on combustion and mechanical behaviour of pyrolysis biochar Mater Today Commun, 2022, 31: 103629.
CrossRef Google scholar
[]
Shubhra QTH, Alam AKMM, Beg MDH, Khan MA, Gafur MA. Mechanical and degradation characteristics of natural silk and synthetic phosphate glass fiber reinforced polypropylene composites J Compos Mater, 2011, 45(12): 1305-1313.
CrossRef Google scholar
[]
Shubhra QT, Alam A, Quaiyyum M. Mechanical properties of polypropylene composites J Thermoplast Compos Mater, 2013, 26(3): 362-391.
CrossRef Google scholar
[]
Snowdon MR, Mohanty AK, Misra M. A study of carbonized lignin as an alternative to carbon black ACS Sustain Chem Eng, 2014, 2(5): 1257-1263.
CrossRef Google scholar
[]
Somani RH, Yang L, Sics I, Hsiao BS, Pogodina NV, Winter HH, Agarwal P, Fruitwala H, Tsou A. Orientation-induced crystallization in isotactic polypropylene melt by shear deformation Macromol Symp, 2002, 185(1): 105-117.
CrossRef Google scholar
[]
Szykiedans K, Credo W, Osiński D. Selected mechanical properties of PETG 3-D prints Procedia Eng, 2017, 177: 455-461.
CrossRef Google scholar
[]
Taib N-AAB, Rahman MR, Huda D, Kuok KK, Hamdan S, Bakri MK, Bin, Julaihi MRM, Bin, Khan A. A review on poly lactic acid (PLA) as a biodegradable polymer Polym Bull, 2023, 80(2): 1179-1213.
CrossRef Google scholar
[]
Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S. Highly oriented carbon fiber–polymer composites via additive manufacturing Compos Sci Technol, 2014, 105: 144-150.
CrossRef Google scholar
[]
Tian X, Liu T, Yang C, Wang Q, Li D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites Compos Part Appl Sci Manuf, 2016, 88: 198-205.
CrossRef Google scholar
[]
Torrado Perez AR, Roberson DA, Wicker RB. Fracture surface analysis of 3D-Printed tensile specimens of novel ABS-Based materials J Fail Anal Prev, 2014, 14(3): 343-353.
CrossRef Google scholar
[]
Tsubota T, Tsuchiya S, Kusumoto T, Kalderis D. Assessment of Biochar produced by Flame-Curtain Pyrolysis as a Precursor for the development of an efficient Electric double-layer Capacitor Energies (Basel), 2021, 14(22): 7671.
CrossRef Google scholar
[]
Vidakis N, David C, Petousis M, Sagris D, Mountakis N. Optimization of key quality indicators in material extrusion 3D printing of acrylonitrile butadiene styrene: the impact of critical process control parameters on the surface roughness, dimensional accuracy, and porosity Mater Today Commun, 2023.
CrossRef Google scholar
[]
Vidakis N, Kalderis D, Petousis M, Maravelakis E, Mountakis N, Bolanakis N, Papadakis V. Biochar filler in MEX and VPP additive manufacturing: characterization and reinforcement effects in polylactic acid and standard grade resin matrices Biochar, 2023, 5(1): 39.
CrossRef Google scholar
[]
Vidakis N, Moutsopoulou A, Petousis M, Michailidis N, Charou C, Papadakis V, Mountakis N, Dimitriou E, Argyros A. Rheology and thermomechanical evaluation of additively manufactured acrylonitrile butadiene styrene (ABS) with optimized tungsten carbide (WC) nano-ceramic content Ceram Int, 2023.
CrossRef Google scholar
[]
Vidakis N, Petousis M, Michailidis N, Mountakis N, Argyros A, Spiridaki M, Moutsopoulou A, Papadakis V, Charitidis C. High-density polyethylene/carbon black composites in material extrusion additive manufacturing: conductivity, thermal, rheological, and mechanical responses Polymers (Basel), 2023, 15: 4717.
CrossRef Google scholar
[]
Vidakis N, Petousis M, Michailidis N, Nasikas N, Papadakis V, Argyros A, Mountakis N, Charou C, Moutsopoulou A. Optimizing Titanium Carbide (TiC) ceramic nanofiller loading in isotactic polypropylene for MEX additive manufacturing: mechano-thermal and rheology aspects Mater Today Commun, 2023.
CrossRef Google scholar
[]
Vidakis N, Kalderis D, Michailidis N, Papadakis V, Mountakis N, Argyros A, Spiridaki M, Moutsopoulou A, Petousis M. Environmentally friendly polylactic acid/ferronickel slag composite filaments for material extrusion 3D printing: a comprehensive optimization of the filler content Mater Today Sustain, 2024.
CrossRef Google scholar
[]
Vidakis N, Michailidis N, Petousis M, Nasikas NK, Saltas V, Papadakis V, Mountakis N, Argyros A, Spiridaki M, Valsamos I. Multifunctional HDPE/Cu biocidal nanocomposites for MEX additive manufactured parts: perspectives for the defense industry Def Technol, 2024.
CrossRef Google scholar
[]
Vidakis N, Petousis M, David C, Nasikas NK, Sagris D, Mountakis N, Spiridaki M, Moutsopoulou A, Stratakis E. Critical quality indicators of high-performance polyetherimide (ULTEM) over the MEX 3D printing key generic control parameters: prospects for personalized equipment in the defense industry Def Technol, 2024.
CrossRef Google scholar
[]
Vidakis N, Petousis M, Kalderis D, Michailidis N, Maravelakis E, Saltas V, Bolanakis N, Papadakis V, Argyros A, Mountakis N, Spiridaki M. A coherent engineering assessment of ABS/biochar biocomposites in MEX 3D additive manufacturing Heliyon, 2024, 10(11): e32094.
CrossRef Google scholar
[]
Vidakis N, Petousis M, Kalderis D, Michailidis N, Maravelakis E, Saltas V, Bolanakis N, Papadakis V, Spiridaki M, Argyros A. Reinforced HDPE with optimized biochar content for material extrusion additive manufacturing: morphological, rheological, electrical, and thermomechanical insights Biochar, 2024, 6(1): 37.
CrossRef Google scholar
[]
Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol, 2003, 63(9): 1259-1264.
CrossRef Google scholar
[]
Wang X, Zhao L, Fuh JYH, Lee HP. Effect of porosity on mechanical properties of 3D printed polymers: experiments and micromechanical modeling based on X-ray computed tomography analysis Polym (Basel), 2019.
CrossRef Google scholar
[]
Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z. 3D Printable graphene composite Sci Rep, 2015, 5(1): 11181.
CrossRef Google scholar
[]
Yan C, Kleiner C, Tabigue A, Shah V, Sacks G, Shah D, DeStefano V. PETG: applications in modern medicine Eng Regen, 2024, 5(1): 45-55.
CrossRef Google scholar
[]
Yasmin A, Daniel IM. Mechanical and thermal properties of graphite platelet/epoxy composites Polym (Guildf), 2004, 45(24): 8211-8219.
CrossRef Google scholar
[]
Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review Bioact Mater, 2019, 4: 56-70.
CrossRef Google scholar
[]
Zhang Q, Zhang D, Xu H, Lu W, Ren X, Cai H, Lei H, Huo E, Zhao Y, Qian M, Lin X, Villota EM, Mateo W. Biochar filled high-density polyethylene composites with excellent properties: towards maximizing the utilization of agricultural wastes Ind Crops Prod, 2020, 146: 112185.
CrossRef Google scholar
[]
Zhang Y, He M, Wang L, Yan J, Ma B, Zhu X, Ok YS, Mechtcherine V, Tsang DCW. Biochar as construction materials for achieving carbon neutrality Biochar, 2022, 4(1): 59.
CrossRef Google scholar
[]
Ziemian S, Okwara M, Ziemian CW. Tensile and fatigue behavior of layered acrylonitrile butadiene styrene Rapid Prototyp J, 2015, 21(3): 270-278.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/