Decoupled fungal and bacterial functional responses to biochar amendment drive rhizosphere priming effect on soil organic carbon mineralization

Chao He, Jean Damascene Harindintwali, Hao Cui, Weiwei Zheng, Qingyang Zhu, Scott X. Chang, Fang Wang, Jingping Yang

Biochar ›› 2024, Vol. 6 ›› Issue (1) : 84.

Biochar ›› 2024, Vol. 6 ›› Issue (1) : 84. DOI: 10.1007/s42773-024-00376-5
Original Research

Decoupled fungal and bacterial functional responses to biochar amendment drive rhizosphere priming effect on soil organic carbon mineralization

Author information +
History +

Abstract

Biochar application altered rhizosphere priming effects by − 116.96% to + 171.59% during maize growth.

Biochar application increased total soil organic carbon and boosted bacterial abundance.

Biochar-plant interactions accelerated soil carbon mineralization and accumulation.

Cite this article

Download citation ▾
Chao He, Jean Damascene Harindintwali, Hao Cui, Weiwei Zheng, Qingyang Zhu, Scott X. Chang, Fang Wang, Jingping Yang. Decoupled fungal and bacterial functional responses to biochar amendment drive rhizosphere priming effect on soil organic carbon mineralization. Biochar, 2024, 6(1): 84 https://doi.org/10.1007/s42773-024-00376-5

References

[]
AbrolV, Ben-HurM, VerheijenFGA, KeizerJJ, MartinsMAS, TenawH, TchehanskyL, GraberER. Biochar effects on soil water infiltration and erosion under seal formation conditions: rainfall simulation experiment. J Soils Sediments, 2016, 16(12): 2709-2719
CrossRef Google scholar
[]
AmelootN, GraberER, VerheijenFGA, De NeveS. Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci, 2013, 64(4): 379-390
CrossRef Google scholar
[]
BarabásiA-L, GulbahceN, LoscalzoJ. Network medicine: a network-based approach to human disease. Nat Rev Genet, 2010, 12(1): 56-68
CrossRef Google scholar
[]
BarberánA, BatesST, CasamayorEO, FiererN. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J, 2012, 6(2): 343-351
CrossRef Google scholar
[]
Barbosa de SousaÁM, Soares SantosRR, GehringC. Charcoal in Amazonian paddy soil—nutrient availability, rice growth and methane emissions. J Plant Nutr Soil Sci, 2014, 177(1): 39-47
CrossRef Google scholar
[]
BarnettSE, YoungblutND, BuckleyDH. Bacterial community dynamics explain carbon mineralization and assimilation in soils of different land-use history. Environ Microbiol, 2022, 24(11): 5230-5247
CrossRef Google scholar
[]
BastianM, HeymannS, JacomyM. Gephi: an open source software for exploring and manipulating networks. Proc Int AAAI Confer Web Social Media, 2009, 3(1): 361-362
CrossRef Google scholar
[]
BastidaF, EldridgeDJ, GarciaC, Kenny PngG, BardgettRD, Delgado-BaquerizoM. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes. ISME J, 2021, 15(7): 2081-2091
CrossRef Google scholar
[]
BiddleJF, Fitz-GibbonS, SchusterSC, BrenchleyJE, HouseCH. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. P Natl Acad Sci USA, 2008, 105(30): 10583-10588
CrossRef Google scholar
[]
BokulichNA, KaehlerBD, RideoutJR, DillonM, BolyenE, KnightR, HuttleyGA, Gregory CaporasoJ. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome, 2018, 6(1): 90
CrossRef Google scholar
[]
BolyenE, RideoutJR, DillonMR, BokulichNA, AbnetCC, Al-GhalithGA, AlexanderH, AlmEJ, ArumugamM, AsnicarF, BaiY, BisanzJE, BittingerK, BrejnrodA, BrislawnCJ, BrownCT, CallahanBJ, Caraballo-RodriguezAM, ChaseJ, CopeEK, Da SilvaR, DienerC, DorresteinPC, DouglasGM, DurallDM, DuvalletC, EdwardsonCF, ErnstM, EstakiM, FouquierJ, GauglitzJM, GibbonsSM, GibsonDL, GonzalezA, GorlickK, GuoJ, HillmannB, HolmesS, HolsteH, HuttenhowerC, HuttleyGA, JanssenS, JarmuschAK, JiangL, KaehlerBD, KangKB, KeefeCR, KeimP, KelleyST, KnightsD, KoesterI, KosciolekT, KrepsJ, LangilleMGI, LeeJ, LeyR, LiuYX, LoftfieldE, LozuponeC, MaherM, MarotzC, MartinBD, McDonaldD, McIverLJ, MelnikAV, MetcalfJL, MorganSC, MortonJT, NaimeyAT, Navas-MolinaJA, NothiasLF, OrchanianSB, PearsonT, PeoplesSL, PetrasD, PreussML, PruesseE, RasmussenLB, RiversA, RobesonMS2nd, RosenthalP, SegataN, ShafferM, ShifferA, SinhaR, SongSJ, SpearJR, SwaffordAD, ThompsonLR, TorresPJ, TrinhP, TripathiA, TurnbaughPJ, Ul-HasanS, van der HooftJJJ, VargasF, Vazquez-BaezaY, VogtmannE, von HippelM, WaltersW, WanY, WangM, WarrenJ, WeberKC, WilliamsonCHD, WillisAD, XuZZ, ZaneveldJR, ZhangY, ZhuQ, KnightR, CaporasoJG. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 2019, 37(8): 852-857
CrossRef Google scholar
[]
BruunEW, AmbusP, EgsgaardH, Hauggaard-NielsenH. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem, 2012, 46: 73-79
CrossRef Google scholar
[]
CalabreseS, MohantyBP, MalikAA. Soil microorganisms regulate extracellular enzyme production to maximize their growth rate. Biogeochemistry, 2022, 158(3): 303-312
CrossRef Google scholar
[]
CarusoT, De VriesFT, BardgettRD, LehmannJ. Soil organic carbon dynamics matching ecological equilibrium theory. Ecol Evol, 2018, 8(22): 11169-11178
CrossRef Google scholar
[]
ChenL, LiuL, MaoC, QinS, WangJ, LiuF, BlagodatskyS, YangG, ZhangQ, ZhangD, YuJ, YangY. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat Commun, 2018, 9: 3951
CrossRef Google scholar
[]
ChenQL, DingJ, LiCY, YanZZ, HeJZ, HuHW. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci Total Environ, 2020, 734
CrossRef Google scholar
[]
ChenP, LiuY, MoC, JiangZ, YangJ, LinJ. Microbial mechanism of biochar addition on nitrogen leaching and retention in tea soils from different plantation ages. Sci Total Environ, 2021, 757
CrossRef Google scholar
[]
ChenP, MoC, HeC, CuiH, LinJ, YangJ. Shift of microbial turnover time and metabolic efficiency strongly regulates rhizosphere priming effect under nitrogen fertilization in paddy soil. Sci Total Environ, 2021, 800
CrossRef Google scholar
[]
ChenT, LiuYX, HuangL. ImageGP: an easy-to-use data visualization web server for scientific researchers. iMeta, 2022, 1(1)
CrossRef Google scholar
[]
ChenY, SunK, YangY, GaoB, ZhengH. Effects of biochar on the accumulation of necromass-derived carbon, the physical protection and microbial mineralization of soil organic carbon. Crit Rev Environ Sci Technol, 2023
CrossRef Google scholar
[]
ChengW. Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biol Biochem, 2009, 41(9): 1795-1801
CrossRef Google scholar
[]
CrossA, SohiSP. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem, 2011, 43(10): 2127-2134
CrossRef Google scholar
[]
Delgado-BaquerizoM, OliverioAM, BrewerTE, Benavent-GonzalezA, EldridgeDJ, BardgettRD, MaestreFT, SinghBK, FiererN. A global atlas of the dominant bacteria found in soil. Science, 2018, 359(6373): 320-325
CrossRef Google scholar
[]
DharmakeerthiRS, HanleyK, WhitmanT, WoolfD, LehmannJ. Organic carbon dynamics in soils with pyrogenic organic matter that received plant residue additions over seven years. Soil Biol Biochem, 2015, 88: 268-274
CrossRef Google scholar
[]
DijkstraFA, CarrilloY, PendallE, MorganJA. Rhizosphere priming: a nutrient perspective. Front Microbiol, 2013, 4: 00216
CrossRef Google scholar
[]
DijkstraFA, ZhuB, ChengW. Root effects on soil organic carbon: a double-edged sword. New Phytol, 2021, 230(1): 60-65
CrossRef Google scholar
[]
FanK, WeisenhornP, GilbertJA, ShiY, BaiY, ChuH. Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biol Biochem, 2018, 121: 185-192
CrossRef Google scholar
[]
FaninN, GundaleMJ, FarrellM, CiobanuM, BaldockJA, NilssonMC, KardolP, WardleDA. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat Ecol Evol, 2018, 2(2): 269-278
CrossRef Google scholar
[]
FiererN, BradfordMA, JacksonRB. Toward an ecological classification of soil bacteria. Ecology, 2007, 88(6): 1354-1364
CrossRef Google scholar
[]
GadeL, ScheelCM, PhamCD, LindsleyMD, IqbalN, ClevelandAA, WhitneyAM, LockhartSR, BrandtME, LitvintsevaAP. Detection of fungal DNA in human body fluids and tissues during a multistate outbreak of fungal meningitis and other infections. Eukaryot Cell, 2013, 12(5): 677-683
CrossRef Google scholar
[]
GalyV, Peucker-EhrenbrinkB, EglintonT. Global carbon export from the terrestrial biosphere controlled by erosion. Nature, 2015, 521(7551): 204-207
CrossRef Google scholar
[]
GoodaleCL. Multiyear fate of a 15N tracer in a mixed deciduous forest: retention, redistribution, and differences by mycorrhizal association. Glob Change Biol, 2017, 23(2): 867-880
CrossRef Google scholar
[]
HarindintwaliJD, HeC, WenX, LiuY, WangM, FuY, XiangL, JiangJ, JiangX, WangF. A comparative evaluation of biochar and Paenarthrobacter sp. AT5 for reducing atrazine risks to soybeans and bacterial communities in black soil. Environ Res, 2024, 252
CrossRef Google scholar
[]
HeC, HarindintwaliJD, CuiH, CuiY, ChenP, MoC, ZhuQ, ZhengW, AlessiDS, WangF, JiangZ, YangJ. Deciphering the dual role of bacterial communities in stabilizing rhizosphere priming effect under intra-annual change of growing seasons. Sci Total Environ, 2023, 903
CrossRef Google scholar
[]
HestrinR, HammerEC, MuellerCW, LehmannJ. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun Biol, 2019, 2(1): 233
CrossRef Google scholar
[]
HuG, FeeleyKJ, WuJ, XuG, YuM. Determinants of plant species richness and patterns of nestedness in fragmented landscapes: evidence from land-bridge islands. Landsc Ecol, 2011, 26(10): 1405-1417
CrossRef Google scholar
[]
HuoC, LuoY, ChengW. Rhizosphere priming effect: a meta-analysis. Soil Biol Biochem, 2017, 111: 78-84
CrossRef Google scholar
[]
JiangZ, LiuY, YangJ, BrookesPC, GuninaA. Rhizosphere priming regulates soil organic carbon and nitrogen mineralization: the significance of abiotic mechanisms. Geoderma, 2021, 385
CrossRef Google scholar
[]
JiaoS, XuY, ZhangJ, HaoX, LuY. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems, 2019, 4(2): e00313-00318
CrossRef Google scholar
[]
JiaoS, YangY, XuY, ZhangJ, LuY. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J, 2020, 14(1): 202-216
CrossRef Google scholar
[]
JiaoS, LuY, WeiG. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob Change Biol, 2021, 28(1): 140-153
CrossRef Google scholar
[]
JosephS, CowieAL, Van ZwietenL, BolanN, BudaiA, BussW, CayuelaML, GraberER, IppolitoJA, KuzyakovY, LuoY, OkYS, PalansooriyaKN, ShepherdJ, StephensS, WengZ, LehmannJ. How biochar works, and when it doesn't: a review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 2021, 13(11): 1731-1764
CrossRef Google scholar
[]
KaiserC, FranklinO, DieckmannU, RichterA. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecol Lett, 2014, 17(6): 680-690
CrossRef Google scholar
[]
KaiserC, FranklinO, RichterA, DieckmannU. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils. Nat Commun, 2015, 6: 8960
CrossRef Google scholar
[]
KatohK, MisawaK, KumaK, MiyataT. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res, 2002, 30(14): 3059-3066
CrossRef Google scholar
[]
KeithA, SinghB, SinghBP. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ Sci Technol, 2011, 45(22): 9611-9618
CrossRef Google scholar
[]
KeithA, SinghB, DijkstraFA. Biochar reduces the rhizosphere priming effect on soil organic carbon. Soil Biol Biochem, 2015, 88: 372-379
CrossRef Google scholar
[]
KuzyakovY. Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci, 2002, 165(4): 382-396
CrossRef Google scholar
[]
KuzyakovY, FriedelJK, StahrK. Review of mechanisms and quantification of priming effects. Soil Biol Biochem, 2000, 32(11–12): 1485-1498
CrossRef Google scholar
[]
KuzyakovY, HillPW, JonesDL. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil, 2007, 290(1–2): 293-305
CrossRef Google scholar
[]
LabouyrieM, BallabioC, RomeroF, PanagosP, JonesA, SchmidMW, MikryukovV, DulyaO, TedersooL, BahramM, LugatoE, van der HeijdenMGA, OrgiazziA. Patterns in soil microbial diversity across Europe. Nat Commun, 2023, 14: 3311
CrossRef Google scholar
[]
LehmannJ, KleberM. The contentious nature of soil organic matter. Nature, 2015, 528(7580): 60-68
CrossRef Google scholar
[]
LehmannJ, CowieA, MasielloCA, KammannC, WoolfD, AmonetteJE, CayuelaML, Camps-ArbestainM, WhitmanT. Biochar in climate change mitigation. Nat Geosci, 2021, 14(12): 883-892
CrossRef Google scholar
[]
LiSP, WangP, ChenY, WilsonMC, YangX, MaC, LuJ, ChenXY, WuJ, ShuWS, JiangL. Island biogeography of soil bacteria and fungi: similar patterns, but different mechanisms. ISME J, 2020, 14(7): 1886-1896
CrossRef Google scholar
[]
LiZ, TongD, NieX, XiaoH, JiaoP, JiangJ, LiQ, LiaoW. New insight into soil carbon fixation rate: the intensive co-occurrence network of autotrophic bacteria increases the carbon fixation rate in depositional sites. Agr Ecosyst Environ, 2021, 320
CrossRef Google scholar
[]
LiZ, ZengZ, SongZ, WangF, TianD, MiW, HuangX, WangJ, SongL, YangZ, WangJ, FengH, JiangL, ChenY, LuoY, NiuS. Vital roles of soil microbes in driving terrestrial nitrogen immobilization. Global Change Biol, 2021, 27(9): 1848-1858
CrossRef Google scholar
[]
LiC, GillingsMR, ZhangC, ChenQ, ZhuD, WangJ, ZhaoK, XuQ, LeungPH, LiX, LiuJ, JinL. Ecology and risks of the global plastisphere as a newly expanding microbial habitat. Innovation, 2024
CrossRef Google scholar
[]
LiuJJ, GuoYP, GuHD, LiuZX, HuXJ, YuZH, LiYS, LiLJ, SuiYY, JinJ, LiuXB, AdamsJM, WangGH. Conversion of steppe to cropland increases spatial heterogeneity of soil functional genes. ISME J, 2023, 17(11): 1872-1883
CrossRef Google scholar
[]
LiuZ, ZhangW, MaR, LiS, SongK, ZhengJ, WangY, BianR, ZhangX, PanG. Biochar-plant interactions enhance nonbiochar carbon sequestration in a rice paddy soil. Commun Earth Environ, 2023, 4(1): 494
CrossRef Google scholar
[]
LoucaS, ParfreyLW, DoebeliM. Decoupling function and taxonomy in the global ocean microbiome. Science, 2016, 353(6305): 1272-1277
CrossRef Google scholar
[]
LuoL, WangJ, LvJ, LiuZ, SunT, YangY, ZhuYG. Carbon sequestration strategies in soil using biochar: advances, challenges, and opportunities. Environ Sci Technol, 2023, 57(31): 11357-11372
CrossRef Google scholar
[]
MaB, WangH, DsouzaM, LouJ, HeY, DaiZ, BrookesPC, XuJ, GilbertJA. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J, 2016, 10(8): 1891-1901
CrossRef Google scholar
[]
MaestreFT, QueroJL, GotelliNJ, EscuderoA, OchoaV, Delgado-BaquerizoM, Garcia-GomezM, BowkerMA, SoliveresS, EscolarC, Garcia-PalaciosP, BerdugoM, ValenciaE, GozaloB, GallardoA, AguileraL, ArredondoT, BlonesJ, BoekenB, BranD, ConceicaoAA, CabreraO, ChaiebM, DerakM, EldridgeDJ, EspinosaCI, FlorentinoA, GaitanJ, GaticaMG, GhiloufiW, Gomez-GonzalezS, GutierrezJR, HernandezRM, HuangX, Huber-SannwaldE, JankjuM, MiritiM, MonerrisJ, MauRL, MoriciE, NaseriK, OspinaA, PoloV, PrinaA, PuchetaE, Ramirez-CollantesDA, RomaoR, TigheM, Torres-DiazC, ValJ, VeigaJP, WangD, ZaadyE. Plant species richness and ecosystem multifunctionality in global drylands. Science, 2012, 335(6065): 214-218
CrossRef Google scholar
[]
MasonARG, SalomonMJ, LoweAJ, CavagnaroTR. Microbial solutions to soil carbon sequestration. J Clean Prod, 2023, 417
CrossRef Google scholar
[]
McDonaldD, JiangY, BalabanM, CantrellK, ZhuQ, GonzalezA, MortonJT, NicolaouG, ParksDH, KarstSM, AlbertsenM, HugenholtzP, DeSantisT, SongSJ, BartkoA, HavulinnaAS, JousilahtiP, ChengS, InouyeM, NiiranenT, JainM, SalomaaV, LahtiL, MirarabS, KnightR. Greengenes2 unifies microbial data in a single reference tree. Nat Biotechnol, 2023, 42(5): 715-718
CrossRef Google scholar
[]
McMurdiePJ, HolmesS. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 2013, 8(4)
CrossRef Google scholar
[]
MeierIC, FinziAC, PhillipsRP. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol Biochem, 2017, 106: 119-128
CrossRef Google scholar
[]
MoinetGYK, HijbeekR, van VuurenDP, GillerKE. Carbon for soils, not soils for carbon. Glob Change Biol, 2023, 29(9): 2384-2398
CrossRef Google scholar
[]
MoorheadDL, SinsabaughRL, HillBH, WeintraubMN. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol Biochem, 2016, 93: 1-7
CrossRef Google scholar
[]
NatashaN, ShahidM, KhalidS, BibiI, NaeemMA, NiaziNK, TackFMG, IppolitoJA, RinklebeJ. Influence of biochar on trace element uptake, toxicity and detoxification in plants and associated health risks: a critical review. Crit Rev Environ Sci Technol, 2021, 52(16): 2803-2843
CrossRef Google scholar
[]
NguyenNH, SongZ, BatesST, BrancoS, TedersooL, MenkeJ, SchillingJS, KennedyPG. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol, 2016, 20: 241-248
CrossRef Google scholar
[]
NilssonRH, LarssonKH, TaylorAFS, Bengtsson-PalmeJ, JeppesenTS, SchigelD, KennedyP, PicardK, GlöcknerFO, TedersooL, SaarI, KõljalgU, AbarenkovK. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res, 2019, 47(D1): D259-D264
CrossRef Google scholar
[]
PauschJ, ZhuB, KuzyakovY, ChengW. Plant inter-species effects on rhizosphere priming of soil organic matter decomposition. Soil Biol Biochem, 2013, 57: 91-99
CrossRef Google scholar
[]
PeiJ, DijkstraFA, LiJ, FangC, SuJ, ZhaoJ, NieM, WuJ. Biochar-induced reductions in the rhizosphere priming effect are weaker under elevated CO2. Soil Biol Biochem, 2020, 142
CrossRef Google scholar
[]
Peres-NetoPR, JacksonDA. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, 2001, 129(2): 169-178
CrossRef Google scholar
[]
PietikäinenJ, KiikkiläO, FritzeH. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 2000, 89(2): 231-242
CrossRef Google scholar
[]
QiuLP, ZhangQ, ZhuHS, ReichPB, BanerjeeS, van der HeijdenMGA, SadowskyMJ, IshiiS, JiaXX, ShaoMG, LiuBY, JiaoH, LiHQ, WeiXR. Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J, 2021, 15(8): 2474-2489
CrossRef Google scholar
[]
ReineltL, WhitakerJ, KazakouE, BonnalL, BastianelliD, BullockJM, OstleNJ. Drought effects on root and shoot traits and their decomposability. Funct Ecol, 2023, 37(4): 1044-1054
CrossRef Google scholar
[]
SinsabaughRL, Follstad ShahJJ. Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol S, 2012, 43(1): 313-343
CrossRef Google scholar
[]
SpohnM, ChodakM. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils. Soil Biol Biochem, 2015, 81: 128-133
CrossRef Google scholar
[]
StegenJC, LinX, KonopkaAE, FredricksonJK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J, 2012, 6(9): 1653-1664
CrossRef Google scholar
[]
TedersooL, BahramM, PolmeS, KoljalgU, YorouNS, WijesunderaR, Villarreal RuizL, Vasco-PalaciosAM, ThuPQ, SuijaA, SmithME, SharpC, SaluveerE, SaittaA, RosasM, RiitT, RatkowskyD, PritschK, PoldmaaK, PiepenbringM, PhosriC, PetersonM, PartsK, PartelK, OtsingE, NouhraE, NjouonkouAL, NilssonRH, MorgadoLN, MayorJ, MayTW, MajuakimL, LodgeDJ, LeeSS, LarssonKH, KohoutP, HosakaK, HiiesaluI, HenkelTW, HarendH, GuoLD, GreslebinA, GreletG, GemlJ, GatesG, DunstanW, DunkC, DrenkhanR, DearnaleyJ, De KeselA, DangT, ChenX, BueggerF, BrearleyFQ, BonitoG, AnslanS, AbellS, AbarenkovK. Fungal biogeography. Global diversity and geography of soil fungi. Science, 2014, 346(6213): 1256688
CrossRef Google scholar
[]
ThiesJE, RilligMC. LehmannJ, JosephS. Characteristics of biochar: biological properties. Biochar for environmental management, 2009LondonRoutledge85-106
[]
TrivediP, LeachJE, TringeSG, SaT, SinghBK. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol, 2020, 18(11): 607-621
CrossRef Google scholar
[]
WangC, ChenD, ShenJ, YuanQ, FanF, WeiW, LiY, WuJ. Biochar alters soil microbial communities and potential functions 3–4 years after amendment in a double rice cropping system. Agr Ecosyst Environ, 2021, 311
CrossRef Google scholar
[]
WangF, HarindintwaliJD, YuanZ, WangM, WangF, LiS, YinZ, HuangL, FuY, LiL, ChangSX, ZhangL, RinklebeJ, YuanZ, ZhuQ, XiangL, TsangDCW, XuL, JiangX, LiuJ, WeiN, KästnerM, ZouY, OkYS, ShenJ, PengD, ZhangW, BarceloD, ZhouY, BaiZ, LiB, ZhangB, WeiK, CaoH, TanZ, ZhaoL-b, HeX, ZhengJ, BolanN, LiuX, HuangC, DietmannS, LuoM, SunN, GongJ, GongY, BrahushiF, ZhangT, XiaoC, LiX, ChenW, JiaoN, LehmannJ, ZhuY-G, JinH, SchaefferA, TiedjeJM, ChenJM. Technologies and perspectives for achieving carbon neutrality. Innovation, 2021, 2(4)
CrossRef Google scholar
[]
WangS, SunP, ZhangG, GrayN, DolfingJ, Esquivel-ElizondoS, PenuelasJ, WuY. Contribution of periphytic biofilm of paddy soils to carbon dioxide fixation and methane emissions. Innovation, 2022, 3(1)
CrossRef Google scholar
[]
WangF, HarindintwaliJD, WeiK, ShanY, MiZ, CostelloMJ, GrunwaldS, FengZ, WangF, GuoY, WuX, KumarP, KästnerM, FengX, KangS, LiuZ, FuY, ZhaoW, OuyangC, ShenJ, WangH, ChangSX, EvansDL, WangR, ZhuC, XiangL, RinklebeJ, DuM, HuangL, BaiZ, LiS, LalR, ElsnerM, WigneronJ-P, FlorindoF, JiangX, ShaheenSM, ZhongX, BolR, VasquesGM, LiX, PfautschS, WangM, HeX, AgathokleousE, DuH, YanH, KengaraFO, BrahushiF, LongX-E, PereiraP, OkYS, RilligMC, JeppesenE, BarcelóD, YanX, JiaoN, HanB, SchäfferA, ChenJM, ZhuY, ChengH, AmelungW, SpötlC, ZhuJ, TiedjeJM. Climate change: strategies for mitigation and adaptation. Innov Geosci, 2023, 1(1)
CrossRef Google scholar
[]
WangX, LiS, ZhuB, HomyakPM, ChenG, YaoX, WuD, YangZ, LyuM, YangY. Long-term nitrogen deposition inhibits soil priming effects by enhancing phosphorus limitation in a subtropical forest. Global Change Biol, 2023, 29(14): 4081-4093
CrossRef Google scholar
[]
WardleDA, BardgettRD, KlironomosJN, SetalaH, van der PuttenWH, WallDH. Ecological linkages between aboveground and belowground biota. Science, 2004, 304(5677): 1629-1633
CrossRef Google scholar
[]
WardleDA, NilssonMC, ZackrissonO. Fire-derived charcoal causes loss of forest humus. Science, 2008, 320(5876): 629
CrossRef Google scholar
[]
WengZH, Van ZwietenL, SinghBP, KimberS, MorrisS, CowieA, MacdonaldLM. Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system. Soil Biol Biochem, 2015, 90: 111-121
CrossRef Google scholar
[]
WengZH, Van ZwietenL, SinghBP, TavakkoliE, JosephS, MacdonaldLM, RoseTJ, RoseMT, KimberSWL, MorrisS, CozzolinoD, AraujoJR, ArchanjoBS, CowieA. Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat Clim Change, 2017, 7(5): 371-379
CrossRef Google scholar
[]
WengZH, Van ZwietenL, TavakkoliE, RoseMT, SinghBP, JosephS, MacdonaldLM, KimberS, MorrisS, RoseTJ, ArchanjoBS, TangC, FranksAE, DiaoH, SchweizerS, TobinMJ, KleinAR, VongsvivutJ, ChangSLY, KopittkePM, CowieA. Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling. Nat Commun, 2022, 13(1): 5177
CrossRef Google scholar
[]
WerthM, KuzyakovY. 13C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biol Biochem, 2010, 42(9): 1372-1384
CrossRef Google scholar
[]
WhitmanT, EndersA, LehmannJ. Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants. Soil Biol Biochem, 2014, 73: 33-41
CrossRef Google scholar
[]
WickhamH. ggplot2: elegant graphics for data analysis, 20162New YorkSpringer Cham
CrossRef Google scholar
[]
WoolfD, LehmannJ. Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry, 2012, 111(1–3): 83-95
CrossRef Google scholar
[]
WuP, Ata-Ul-KarimST, SinghBP, WangHL, WuTL, LiuC, FangGD, ZhouDM, WangYJ, ChenWF. A scientometric review of biochar research in the past 20 years (1998–2018). Biochar, 2019, 1(1): 23-43
CrossRef Google scholar
[]
XueP, MinasnyB, McBratneyA, PinoV, FajardoM, LuoY. Distribution of soil bacteria involved in C cycling across extensive environmental and pedogenic gradients. Eur J Soil Sci, 2023, 74(1)
CrossRef Google scholar
[]
YuanX, NiuD, GherardiLA, LiuY, WangY, ElserJJ, FuH. Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: evidence from a long-term grassland experiment. Soil Biol Biochem, 2019, 138
CrossRef Google scholar
[]
ZhangL, MaB, TangC, YuH, LvX, Mazza RodriguesJL, DahlgrenRA, XuJ. Habitat heterogeneity induced by pyrogenic organic matter in wildfire-perturbed soils mediates bacterial community assembly processes. ISME J, 2021, 15(7): 1943-1955
CrossRef Google scholar
[]
ZhangY, CaiT, RenZ, LiuY, YuanM, CaiY, YuC, ShuR, HeS, LiJ, WongACN, WanH. Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature. ISME J, 2021, 15(12): 3693-3703
CrossRef Google scholar
[]
ZhangY, DangY, WangJ, HuangQ, WangX, YaoL, VinayN, YuK, WenX, XiongY, LiaoY, HanJ, MoF. A synthesis of soil organic carbon mineralization in response to biochar amendment. Soil Biol Biochem, 2022, 175
CrossRef Google scholar
[]
ZhengB, ZhuY, SardansJ, PenuelasJ, SuJ. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China Life Sci, 2018, 61(12): 1451-1462
CrossRef Google scholar
[]
ZimmermanAR, GaoB, AhnM-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem, 2011, 43(6): 1169-1179
CrossRef Google scholar
Funding
National Natural Science Foundation of China(31870419); National Key Research and Development Program of China(2016YFD0300203-4)

Accesses

Citations

Detail

Sections
Recommended

/