Novel utilization exploration for the dephosphorization waste of Ca–modified biochar: enhanced removal of heavy metal ions from water
Weilin Fu, Mengmeng Li, Hongan Chen, Jianhua Qu, Lisheng Zhang, Shangkai Qiu, Menghan Feng, Mingyao Yuan, Changbin Guo, Jien Zhou, Zhaolin Du, Feng Wang
Novel utilization exploration for the dephosphorization waste of Ca–modified biochar: enhanced removal of heavy metal ions from water
Phosphorus-modified biochar has been proven to enhance the precipitation and complexation of heavy metal ions from wastewater. However, the current modification methods require large amounts of exogenous P and have high energy consumption. Hence, this study proposes and analyzes a strategy integrating biochar production, phosphorus wastewater treatment, dephosphorization waste recovery, and heavy metal removal. “BC-Ca-P” was derived from Ca-modified biochar after phosphorus wastewater treatment. The adsorption of Pb(II) by BC-Ca-P followed the Langmuir isotherm and pseudo–second–order kinetic models. The maximum adsorption capability of 361.20 mg·g−1 at pH 5.0 for 2 h was markedly greater than that of external phosphorous-modified biochar. The adsorption mechanisms were dominated by chemical precipitation and complexation. Furthermore, density functional theory calculations indicated that oxygen-containing functional groups (P-O and C-O) contributed the most to the efficient adsorption of Pb(II) onto BC-Ca-P. To explore its practical feasibility, the adsorption performance of BC-Ca-P recovered from an actual environment was evaluated. The continuous-flow adsorption behavior was investigated and well-fitted utilizing the Thomas and Yoon–Nelson models. There was a negligible P leakage risk of BC-Ca-P during heavy metal treatment. This study describes a novel and sustainable method to utilize dephosphorization waste for heavy metal removal.
• | Dephosphorization biochar waste was used to sustainably remove heavy metals from wastewater. |
• | Field-recovered dephosphorization biochar waste displayed high Pb adsorption capacity. |
• | Dephosphorization biochar for heavy metal removal is an eco–friendly waste–reduction and resource–utilization method. |
Ca-modified biochar / Dephosphorization / Waste recovery / Heavy metal removal / Density functional theory calculation
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
/
〈 | 〉 |