Synergistic effect between biochar and sulfidized nano-sized zero-valent iron enhanced cadmium immobilization in a contaminated paddy soil
Yu Zhou, Lu Lv, Zhi Yu, Jian Zhang, Bing Wang, Ruidong Yang, Miao Chen, Pan Wu, Shengsen Wang
Synergistic effect between biochar and sulfidized nano-sized zero-valent iron enhanced cadmium immobilization in a contaminated paddy soil
Biochar-based sulfidized nano-sized zero-valent iron (SNZVI/BC) can effectively immobilize cadmium (Cd) in contaminated paddy soils. However, the synergistic effects between biochar and SNZVI on Cd immobilization, as well as the underlying mechanisms remain unclear. Herein, a soil microcosm incubation experiment was performed to investigate the immobilization performance of SNZVI/BC towards Cd in the contaminated paddy soil. Results indicated that the addition of SNZVI/BC at a dosage of 3% significantly lessened the concentration of available Cd in the contaminated soil from 14.9 (without addition) to 9.9 mg kg−1 with an immobilization efficiency of 33.3%, indicating a synergistic effect. The sequential extraction results indicated that the proportion of the residual Cd in the contaminated soil increased from 8.1 to 10.3%, manifesting the transformation of the unstable Cd fractions to the steadier specie after application of SNZVI/BC. Also, the addition of SNZVI/BC increased soil pH, organic matter, and dissolved organic carbon, which significantly altered the bacterial community in the soil, enriching the relative abundances of functional microbes (e.g., Bacillus, Clostridium, and Desulfosporosinus). These functional microorganisms further facilitated the generation of ammonium, nitrate, and ferrous iron in the contaminated paddy soil, enhancing nutrients’ availability. The direct interaction between SNZVI/BC and Cd2+, the altered soil physicochemical properties, and the responded bacterial community played important roles in Cd immobilization in the contaminated soil. Overall, the biochar-based SNZVI is a promising candidate for the effective immobilization of Cd and the improvement of nutrients’ availability in the contaminated paddy soil.
• | Biochar-based sulfidized nano-sized zero-valent iron (SNZVI/BC) synergistically immobilized Cd in the contaminated soil. |
• | SNZVI/BC effectively enhanced nutrients’ availability in the contaminated soil. |
• | Nitrate-, Iron-, and sulfate-reducing bacteria were enriched in the SNZVI/BC-treated soil. |
• | Precipitation and complexation played an important role in the immobilization of Cd. |
Biochar / Potentially toxic element / Soil remediation / Microbial response / Sulfidized nano-sized zero-valent iron
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[500] |
Zhang W, Tan X, Gu Y, Liu S, Liu Y, Hu X, Li J, Zhou Y, Liu S, He Y (2020) Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. Chemosphere 250:126268
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
/
〈 | 〉 |