Biochar soil addition alters ant functional traits as exemplified with three species
Sha Liu, Jinsuo Li, Zhaomin Zhou, Christian E. W. Steinberg, Bo Pan, Shu Tao, Baoshan Xing
Biochar soil addition alters ant functional traits as exemplified with three species
The response of soil microorganisms and plants in soil ecosystems to biochar is well recognised. However, biochars’ impact on large soil animal, such as ants, is inadequately understood, with only limited studies focusing on the abundance and mortality rates of some specific ant species. In this study, soil physicochemical properties, and ant community diversity and functional characteristics were compared between experimental plots with and without biochar application. No significant differences in soil (soil physicochemical properties) or ants (ant community richness, species abundance, and morphological characteristics) were observed between the two plots before biochar application. However, the biochar-treated plot soil surface temperatures, pH, and soil water content were significantly higher after 48 weeks. Biochar application promoted Cardiocondyla nuda (by 426%) and Formica japonica abundance (by 93%), but decreased Solenopsis invicta invasive ant species richness (by 54%), consistent with the fact that changes in soil properties were more beneficial to the former two species. In addition, in biochar-treated plots, F. japonica and S. invicta generally showed larger body size (18% and 6.7%), larger eyes (2.7% and 4.0%), and longer femurs (6.3% and 7.9%), which enabled them to respond better to potential barriers, such as plants. Our results highlighted that, besides species abundance and community structure, certain ant functional morphological indicators were also informative in evaluating biochar ecological implications.
• | Biochar application enhanced soil temperature, pH, and water content. |
• | Ants showed larger body size, larger eyes, and longer femurs with biochar application. |
• | Biochar promoted ant richness by creating ant-preferred habitats. |
Biochar / Ant / Community structure / Functional traits / Rice straw / Species abundance
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
Steinberg CEW (2023) A Salmon is a salmon. Sust Aqua Res 2. https://doi.org/10.5281/zenodo.7821652
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
/
〈 | 〉 |