Maximizing the value of liquid products and minimizing carbon loss in hydrothermal processing of biomass: an evolution from carbonization to humification

Nader Marzban, Judy A. Libra, Vera Susanne Rotter, Christiane Herrmann, Kyoung S. Ro, Svitlana Filonenko, Thomas Hoffmann, Markus Antonietti

Biochar ›› 2024, Vol. 6 ›› Issue (1) : 44. DOI: 10.1007/s42773-024-00334-1

Maximizing the value of liquid products and minimizing carbon loss in hydrothermal processing of biomass: an evolution from carbonization to humification

Author information +
History +

Abstract

Hydrothermal carbonization (HTC) converts wet biomass into hydrochar and a process liquid, but aromatic compounds in the products have been reported as a roadblock for soil applications as they can inhibit germination, plant growth, and soil microbial activity. Here, we compared HTC and hydrothermal humification (HTH) of cow manure digestate while varying the initial alkaline content by adding KOH. HTH converted 37.5 wt% of the feedstock to artificial humic acids (A-HAs) found in both solid and liquid, twice that of HTC. HTH reduced phenolic and furanic aromatic compounds by over 70% in solids and 90% in liquids. The A-HAs in HTH resemble natural humic acids (N-HA), based on FTIR, UV–vis spectra, and CHN and XRD analysis. The HTH liquid possesses 60% higher total organic carbon (TOC) than HTC. Although one-third of TOC can be precipitated as A-HA, a high TOC concentration remains in the liquid, which is shown to be mainly organic acids. Therefore, we also evaluated the HTC and HTH liquids for anaerobic biomethane production, and found that compared to the original cow manure digestate, the HTH liquids increased methane yield by 110.3 to 158.6%, a significant enhancement relative to the 17.2% increase seen with HTC liquid. The strong reduction in organic acids during biogas production from HTH liquid indicates the potential for converting soluble byproducts into methane, while maintaining high A-HAs levels in the solid product.

Highlights

Hydrothermal humification of the digestate feedstock created about 37.5 wt% artificial humic acids in both solid and liquid phases.

Increasing the alkaline content of the reaction media significantly decreased the aromatic content in the process liquid while increasing the concentration of organic acids and sugars.

There was little to no gas production observed in the HTH process at higher alkaline contents, indicating carbon preservation in the liquid and solid phases.

Anaerobic processing of the hydrothermal humification (HTH) process liquid resulted in a 158.6% increase in methane production compared to the primary biomass.

The organic acid concentrations decreased after the anaerobic fermentation, while the main HTH product, artificial humic acids, remained nearly unchanged.

Keywords

Hydrothermal carbonization / Hydrothermal humification / Artificial humic acids / Aromatic compounds / Anaerobic digestion

Cite this article

Download citation ▾
Nader Marzban, Judy A. Libra, Vera Susanne Rotter, Christiane Herrmann, Kyoung S. Ro, Svitlana Filonenko, Thomas Hoffmann, Markus Antonietti. Maximizing the value of liquid products and minimizing carbon loss in hydrothermal processing of biomass: an evolution from carbonization to humification. Biochar, 2024, 6(1): 44 https://doi.org/10.1007/s42773-024-00334-1

References

[1]
Ai S, Meng X, Zhang Z, Li R, Teng W, Cheng K, Yang F. Artificial humic acid regulates the impact of fungal community on soil macroaggregates formation. Chemosphere, 2023, 332,
CrossRef Google scholar
[2]
Aiken GR, Mcknight DM, Wershaw RL, Maccarthy P. Humic substances in soil, sediment, and water. Soil Sci, 1986, 142(5): 323,
CrossRef Google scholar
[3]
Alvarez-Murillo A, Libra JA, Ro KS. Theoretical framework for estimating design reactor pressure for water-based hydrothermal carbonization (HTC) systems. Thermal Sci Eng Progr, 2022, 30,
CrossRef Google scholar
[4]
Bargmann I, Rillig MC, Buss W, Kruse A, Kuecke M. Hydrochar and biochar effects on germination of spring barley. J Agro Crop Sci, 2013, 199(5): 360-373,
CrossRef Google scholar
[5]
Berge ND, Li L, Flora JRV, Ro KS. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes. Waste Manage, 2015, 43: 203-217,
CrossRef Google scholar
[6]
Brown AE, Hammerton JM, Camargo-Valero MA, Ross AB. Integration of hydrothermal carbonisation and anaerobic digestion for the energy valorisation of grass. Energies, 2022, 15(10): 3495,
CrossRef Google scholar
[7]
Canellas LP, de Nelson GAS, de Amaral Sobrinho MB, Moraes AA, Rumjamek VM. Cu2+ and Cd2+ adsorption by humic acids extracted from urban organic residues. Ciência Rural, 1999, 29: 21-26,
CrossRef Google scholar
[8]
Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Biores Technol, 2008, 99(10): 4044-4064,
CrossRef Google scholar
[9]
Cunha TJF, Novotny EH, Madari BE, Martin-Neto L, de O Rezende MO, Canelas LP, de M Benites V (2009) Spectroscopy characterization of humic acids isolated from Amazonian dark earth soils (Terra Preta de Índio). In: Amazonian dark earths: Wim Sombroek’s vision. Springer, pp 363–372
[10]
Dandikas V, Herrmann C, Hülsemann B, Jacobi H-F, Krakat N, Meißauer G, Merrettig-Bruns U, Oechsner H, Ohl S, Paterson M (2021) Gasausbeute in landwirtschaftlichen Biogasanlagen: Potenziale, Erträge, Einflussfaktoren
[11]
dos Santos JV, Fregolente LG, Moreira AB, Ferreira OP, Mounier S, Viguier B, Hajjoul H, Bisinoti MC. Humic-like acids from hydrochars: study of the metal complexation properties compared with humic acids from anthropogenic soils using PARAFAC and time-resolved fluorescence. Sci Total Environ, 2020, 722,
CrossRef Google scholar
[12]
Fornes F, Belda RM. Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars. J Environ Manage, 2017, 191: 237-243,
CrossRef Google scholar
[13]
Garlotta D. A literature review of poly(lactic acid). J Polym Environ, 2001, 9(2): 63-84,
CrossRef Google scholar
[14]
Geng H, Xu Y, Zheng L, Liu H, Dai X. Cation exchange resin pretreatment enhancing methane production from anaerobic digestion of waste activated sludge. Water Res, 2022, 212,
CrossRef Google scholar
[15]
Ghaslani M, Rezaee R, Aboubakri O, Sarlaki E, Hoffmann T, Maleki A, Marzban N. Lime-assisted hydrothermal humification and carbonization of sugar beet pulp: Unveiling the yield, quality, and phytotoxicity of products. Biofuel Res J, 2024, 11(1): 2025-2039,
CrossRef Google scholar
[16]
Han L, Ro KS, Sun K, Sun H, Wang Z, Libra JA, Xing B. New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environ Sci Technol, 2016,
CrossRef Google scholar
[17]
Han L, Sun H, Ro KS, Sun K, Libra JA, Xing B. Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresour Technol, 2017, 234(Supplement C): 77-85,
CrossRef Google scholar
[18]
Helffrich D, Oechsner H. The Hohenheim biogas yield test: comparison of different laboratory techniques for the digestion of biomass. Agrartechnische Forschung, 2003, 9(1/3): 27-30
[19]
IHSS | International Humic Substances Society. http://humic-substances.org/. Accessed 8 Jan 2021
[20]
Ipiales RP, de la Rubia MA, Diaz E, Mohedano AF, Rodriguez JJ. Integration of hydrothermal carbonization and anaerobic digestion for energy recovery of biomass waste: an overview. Energy Fuels, 2021, 35(21): 17032-17050,
CrossRef Google scholar
[21]
Jin Y, Zhang X, Yuan Y, Lan Y, Cheng K, Yang F. Synthesis of artificial humic acid-urea complex improves nitrogen utilization. J Environ Manage, 2023, 344,
CrossRef Google scholar
[22]
Klučáková M. Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact. Front Chem, 2018, 6: 235,
CrossRef Google scholar
[23]
Köchermann J, Görsch K, Wirth B, Mühlenberg J, Klemm M. Hydrothermal carbonization: temperature influence on hydrochar and aqueous phase composition during process water recirculation. J Environ Chem Eng, 2018, 6(4): 5481-5487,
CrossRef Google scholar
[24]
Lee JG, Yoon HY, Cha J-Y, Kim W-Y, Kim PJ, Jeon J-R. Artificial humification of lignin architecture: top-down and bottom-up approaches. Biotechnol Adv, 2019, 37(8),
CrossRef Google scholar
[25]
Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J, Emmerich K-H. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2011, 2(1): 71-106,
CrossRef Google scholar
[26]
Lucian M, Volpe M, Gao L, Piro G, Goldfarb JL, Fiori L. Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel, 2018, 233: 257-268,
CrossRef Google scholar
[27]
Malomo GA, Madugu AS, Bolu SA (2018) Sustainable animal manure management strategies and practices. Agricultural waste and residues 119
[28]
Marzban N, Libra JA, Hosseini SH, Fischer MG, Rotter VS. Experimental evaluation and application of genetic programming to develop predictive correlations for hydrochar higher heating value and yield to optimize the energy content. J Environ Chem Eng, 2022, 10(6),
CrossRef Google scholar
[29]
Marzban N, Libra JA, Rotter VS, Ro KS, Moloeznik Paniagua D, Filonenko S. Changes in selected organic and inorganic compounds in the hydrothermal carbonization process liquid while in storage. ACS Omega, 2023,
CrossRef Google scholar
[30]
Michaud S, Bernet N, Buffière P, Roustan M, Moletta R. Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors. Water Res, 2002, 36(5): 1385-1391,
CrossRef Google scholar
[31]
Naidja A, Huang PM, Anderson DW, Van Kessel C. Fourier transform infrared, UV-visible, and X-ray diffraction analyses of organic matter in humin, humic acid, and fulvic acid fractions in soil exposed to elevated CO 2 and N fertilization. Appl Spectrosc, 2002, 56(3): 318-324,
CrossRef Google scholar
[32]
Pukalchik M, Kydralieva K, Yakimenko O, Fedoseeva E, Terekhova V. Outlining the potential role of humic products in modifying biological properties of the soil—a review. Front Environ Sci, 2019,
CrossRef Google scholar
[33]
Reza MT, Andert J, Wirth B, Busch D, Pielert J, Lynam JG, Mumme J. Hydrothermal Carbonization of Biomass for Energy and Crop Production. Appl Bioenergy, 2014,
CrossRef Google scholar
[34]
Reza MT, Wirth B, Lüder U, Werner M. Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Biores Technol, 2014, 169: 352-361,
CrossRef Google scholar
[35]
Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR. Sparks DL. Chapter two - a meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Advances in agronomy, 2014 Academic Press 37-89
[36]
Saba A, Saha P, Reza MT. Co-Hydrothermal Carbonization of coal-biomass blend: influence of temperature on solid fuel properties. Fuel Process Technol, 2017, 167: 711-720,
CrossRef Google scholar
[37]
Sarlaki E, Ghofrani-Isfahani P, Ghorbani M, Benedini L, Kermani A, Rezaei M, Marzban N, Filonenko S, Peng W, Tabatabaei M, He Y, Aghbashlo M, Kianmehr MH, Angelidaki I. Oxidation-alkaline-enhanced abiotic humification valorizes lignin-rich biogas digestate into artificial humic acids. J Cleaner Prod, 2023,
CrossRef Google scholar
[38]
Sarlaki E, Kianmehr MH, Kermani A, Ghorbani M, Ghorbani Javid M, Rezaei M, Peng W, Lam SS, Tabatabaei M, Aghbashlo M, Chen X. Valorizing lignite waste into engineered nitro-humic fertilizer: advancing resource efficiency in the era of a circular economy. Sustain Chem Pharm, 2023, 36,
CrossRef Google scholar
[39]
Shao Y, Bao M, Huo W, Ye R, Liu Y, Lu W. Production of artificial humic acid from biomass residues by a non-catalytic hydrothermal process. J Clean Prod, 2022, 335,
CrossRef Google scholar
[40]
Śliz M, Wilk M. A comprehensive investigation of hydrothermal carbonization: energy potential of hydrochar derived from Virginia mallow. Renewable Energy, 2020, 156: 942-950,
CrossRef Google scholar
[41]
Stevenson FJ. . Humus chemistry: genesis, composition, reactions, 1994 Hoboken John Wiley & Sons
[42]
Ström G, Albihn A, Jinnerot T, Boqvist S, Andersson-Djurfeldt A, Sokerya S, Osbjer K, San S, Davun H, Magnusson U. Manure management and public health: Sanitary and socio-economic aspects among urban livestock-keepers in Cambodia. Sci Total Environ, 2018, 621: 193-200,
CrossRef Google scholar
[43]
Szogi AA, Vanotti MB, Ro KS. Methods for treatment of animal manures to reduce nutrient pollution prior to soil application. Curr Pollution Rep, 2015, 1(1): 47-56,
CrossRef Google scholar
[44]
Tang C, Cheng K, Liu B, Antonietti M, Yang F. Artificial humic acid facilitates biological carbon sequestration under freezing-thawing conditions. Sci Total Environ, 2022, 849,
CrossRef Google scholar
[45]
Tkachenko V, Marzban N, Vogl S, Filonenko S, Antonietti M. Chemical insight into the base-tuned hydrothermal treatment of side stream biomasses. Sustain Energy Fuels, 2023,
CrossRef Google scholar
[46]
Vallini G, Pera A, Agnolucci M, Valdrighi MM. Humic acids stimulate growth and activity of in vitro tested axenic cultures of soil autotrophic nitrifying bacteria. Biol Fertil Soils, 1997, 24: 243-248,
CrossRef Google scholar
[47]
VDI V (2006) Standard procedures 4630: fermentation of organic materials. characterisation of the substrate, sampling, collection of material data. fermentation tests. Verein Deutscher Ingenieure Berlin: Verein Deutscher Ingenieure
[48]
VDLUFA (2012) Handbuch der Landwirtschaftlichen Versuchs-und Untersuchungsmethodik (VDLUFA-Methodenbuch), Bd. III. Die chemische Untersuchung von Futtermitteln. VDLUFA Verlag Darmstadt (Germany)
[49]
Volikov A, Schneider H, Tarakina NV, Marzban N, Antonietti M, Filonenko S. Artificial humic substances as sustainable carriers for manganese: Development of a novel bio-based microfertilizer. Biofuel Res J., 2024, 11(1): 2013-2024,
CrossRef Google scholar
[50]
Wang Y, Deng W, Wang B, Zhang Q, Wan X, Tang Z, Wang Y, Zhu C, Cao Z, Wang G, Wan H. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun, 2013, 4(1): 2141,
CrossRef Google scholar
[51]
Wirth B, Reza T, Mumme J. Influence of digestion temperature and organic loading rate on the continuous anaerobic treatment of process liquor from hydrothermal carbonization of sewage sludge. Bioresour Technol, 2015, 198(Supplement C): 215-222,
CrossRef Google scholar
[52]
Yang F, Antonietti M. Artificial humic acids: sustainable materials against climate change. Adv Sci, 2020, 7(5): 1902992,
CrossRef Google scholar
[53]
Yang F, Antonietti M. The sleeping giant: a polymer view on humic matter in synthesis and applications. Prog Polym Sci, 2020, 100,
CrossRef Google scholar
[54]
Yang F, Zhang S, Cheng K, Antonietti M. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation. Sci Total Environ, 2019, 686: 1140-1151,
CrossRef Google scholar
[55]
Yang F, Zhang S, Song J, Du Q, Li G, Tarakina NV, Antonietti M. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility. Angew Chem, 2019, 131(52): 18989-18992,
CrossRef Google scholar
[56]
Yang F, Yuan Y, Liu Q, Zhang X, Gai S, Jin Y, Cheng K. Artificial humic acid promotes growth of maize seedling under alkali conditions. Environ Pollut, 2023, 327,
CrossRef Google scholar
[57]
Yoshimoto S, Luthfi N, Nakano K, Fukushima T, Takisawa K. Effects of potassium on hydrothermal carbonization of sorghum bagasse. Bioresourc Bioprocess, 2023, 10(1): 24,
CrossRef Google scholar
[58]
Yuan Y, Gai S, Tang C, Jin Y, Cheng K, Antonietti M, Yang F. Artificial humic acid improves maize growth and soil phosphorus utilization efficiency. Appl Soil Ecol, 2022, 179,
CrossRef Google scholar
[59]
Zhang S, Du Q, Cheng K, Antonietti M, Yang F. Efficient phosphorus recycling and heavy metal removal from wastewater sludge by a novel hydrothermal humification-technique. Chem Eng J, 2020, 394,
CrossRef Google scholar
Funding
Deutscher Akademischer Austauschdienst; Leibniz-Institut für Agrartechnik und Bio?konomie e.V. (ATB) (3461)

Accesses

Citations

Detail

Sections
Recommended

/