Removal of per- and polyfluoroalkyl substances and organic fluorine from sewage sludge and sea sand by pyrolysis

Matěj Hušek, Jaroslav Semerád, Siarhei Skoblia, Jaroslav Moško, Jaroslav Kukla, Zdeněk Beňo, Michal Jeremiáš, Tomáš Cajthaml, Michael Komárek, Michael Pohořelý

Biochar ›› 2024, Vol. 6 ›› Issue (1) : 31. DOI: 10.1007/s42773-024-00322-5
Original Research

Removal of per- and polyfluoroalkyl substances and organic fluorine from sewage sludge and sea sand by pyrolysis

Author information +
History +

Abstract

Pyrolysis is one method for treating sewage sludge, particularly in remote areas or decentralised systems. The end product of pyrolysis, sludge-char, can serve as a soil improver. However, there is a lack of comprehensive data on the organic pollutants’ behaviour in sludge-char. In our work, we focused on the behaviour of per- and polyfluoroalkyl substances (PFASs). Sludge was pyrolyzed at 200–700 °C to determine the minimum safe temperature for effective PFASs removal. It is important to note that PFASs may not only be mineralized but also cleaved to unanalyzed PFASs and other organofluorinated substances. To address this issue, we incorporated additional measurements of organic fluorine in the experiment using combustion ion chromatography (CIC). Due to the inherent heterogeneity of sludge, containing a variety of pollutants and their precursors, we conducted pyrolysis on artificially contaminated sand. This allowed us to assess and compare the behaviour of PFASs in a homogeneous matrix. Based on our analyses, we determined that a temperature greater than 400 °C is imperative for effective PFASs and organic fluorine removal. The results were verified by analyzing samples from a commercial sludge pyrolysis unit at the Bohuslavice-Trutnov WWTP, which confirmed our measurements. In light of these results, it becomes evident that sludge pyrolysis below 400 °C is unsuitable for PFAS removal from sewage sludge.

Highlights

The minimum temperature for significant PFASs and organic fluorine removal was 400 °C.

PFASs were part of primary pyrolysis gas: purification or combustion is necessary.

Contamination by PFASs and their congeners could be monitored with organic fluorine.

Keywords

Sewage sludge / PFAS / Pyrolysis / Carbonization / Sludge-char / Organic fluorine

Cite this article

Download citation ▾
Matěj Hušek, Jaroslav Semerád, Siarhei Skoblia, Jaroslav Moško, Jaroslav Kukla, Zdeněk Beňo, Michal Jeremiáš, Tomáš Cajthaml, Michael Komárek, Michael Pohořelý. Removal of per- and polyfluoroalkyl substances and organic fluorine from sewage sludge and sea sand by pyrolysis. Biochar, 2024, 6(1): 31 https://doi.org/10.1007/s42773-024-00322-5

References

[1]
Alinezhad A, Challa Sasi P, Zhang P, Yao B, Kubátová A, Golovko SA, Golovko MY, Xiao F. An investigation of thermal air degradation and pyrolysis of per- and polyfluoroalkyl substances and aqueous film-forming foams in soil. ACS EST Eng, 2022, 2: 198-209,
CrossRef Google scholar
[2]
Aro R, Eriksson U, Kärrman A, Chen F, Wang T, Yeung LWY. Fluorine mass balance analysis of effluent and sludge from Nordic countries. ACS EST Water, 2021, 1: 2087-2096,
CrossRef Google scholar
[3]
Arp PH, Slinde AG. . PFBS in the environment: monitoring and physical-chemical data related to the environmental distribution of perfluorobutanesulfonic acid, 2018 Olso Norwegian geotechnical institute https://www.miljodirektoratet.no/globalassets/publikasjoner/M1122/M1122.pdf
[4]
Ateia M, Maroli A, Tharayil N, Karanfil T. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: a review. Chemosphere, 2019, 220: 866-882,
CrossRef Google scholar
[5]
Bamdad H, Papari S, Moreside E, Berruti F. High-temperature pyrolysis for elimination of per- and polyfluoroalkyl substances (PFAS) from biosolids. Processes, 2022, 10: 2187,
CrossRef Google scholar
[6]
Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag, 2011, 7: 513-541,
CrossRef Google scholar
[7]
Buss W. Pyrolysis solves the issue of organic contaminants in sewage sludge while retaining carbon—making the case for sewage sludge treatment via pyrolysis. ACS Sustain Chem Eng, 2021, 9: 10048-10053,
CrossRef Google scholar
[8]
EPA (2021) PFAS master list of PFAS substances. CompTox chemicals dashboard. https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster. Accessed 6 June 2024
[9]
Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM. Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem, 2021, 40: 606-630,
CrossRef Google scholar
[10]
Fuka J, Kos M, Pohořelý M. Drying and pyrolysis at Trutnov WWTP—the first results of test operation [Sušení a pyrolýza na ČOV Trutnov—první výsledky zkušebního provozu]. SOVAK, 2021, 30: 24-28
[11]
Ghisi R, Vamerali T, Manzetti S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: a review. Environ Res, 2019, 169: 326-341,
CrossRef Google scholar
[12]
Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, Lohmann R, Ng CA, Trier X, Wang Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts., 2020, 22: 2345-2373,
CrossRef Google scholar
[13]
Hall H, Moodie D, Ver C. PFAS in biosolids: a review of international regulations. Water e-Journal, 2021,
CrossRef Google scholar
[14]
Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chemical aspects of human and environmental overload with fluorine. Chem Rev, 2021, 121: 4678-4742,
CrossRef Google scholar
[15]
Horst J, McDonough J, Ross I, Houtz E. Understanding and Managing the potential by-products of PFAS destruction. Groundw Monit Remediat, 2020, 40: 17-27,
CrossRef Google scholar
[16]
Hušek M, Moško J, Pohořelý M. Sewage sludge treatment methods and P-recovery possibilities: current state-of-the-art. J Environ Manage, 2022, 315,
CrossRef Google scholar
[17]
Huygens D, Delgado Sancho L, Saveyn HGM, Tonini D, Eder P, European Commission, Joint Research Centre (2019). Technical proposals for selected new fertilising materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009): process and quality criteria, and assessment of environmental and market impacts for precipitated phosphate salts and derivates, thermal oxidation materials and derivates and pyrolysis and gasification materials
[18]
Kärrman A, Yeung LW, Spaan KM, Lange FT, Nguyen MA, Plassmann M, de Wit CA, Scheurer M, Awad R, Benskin JP. Can determination of extractable organofluorine (EOF) be standardized? First interlaboratory comparisons of EOF and fluorine mass balance in sludge and water matrices. Environ Sci Process Impacts, 2021, 23: 1458-1465,
CrossRef Google scholar
[19]
Kotthoff M, Bücking M. Four chemical trends will shape the next decade’s directions in perfluoroalkyl and polyfluoroalkyl substances research. Front Chem., 2018, 6: 103,
CrossRef Google scholar
[20]
KUKHK (2022) Decree KUKHK—17763/ZP/2022/Le/8 [Rozhodnutí KUKHK – 17763/ZP/2022/Le/8]
[21]
Kundu S, Patel S, Halder P, Patel T, Marzbali MH, Kumar Pramanik B, Paz-Ferreiro J, de Figueiredo CC, Bergmann D, Surapaneni A, Megharaj M, Shah K. Removal of PFASs from biosolids using a semi-pilot scale pyrolysis reactor and the application of biosolids derived biochar for the removal of PFASs from contaminated water. Environ Sci Water Res Technol, 2021, 7: 638-649,
CrossRef Google scholar
[22]
Mancinelli E, Baltrėnaitė E, Baltrėnas P, Paliulis D, Passerini G. Trace metals in biochars from biodegradable by-products of industrial processes. Water Air Soil Pollut, 2016, 227: 198,
CrossRef Google scholar
[23]
McNamara P, Samuel MS, Sathyamoorthy S, Moss L, Valtierra D, Lopez HC, Nigro N, Somerville S, Liu Z. Pyrolysis transports, and transforms, PFAS from biosolids to py-liquid. Environ Sci Water Res Technol, 2022,
CrossRef Google scholar
[24]
Moško J, Pohořelý M, Skoblia S, Beňo Z, Jeremiáš M. Detailed analysis of sewage sludge pyrolysis gas: effect of pyrolysis temperature. Energies, 2020, 13: 4087,
CrossRef Google scholar
[25]
Moško J, Pohořelý M, Cajthaml T, Jeremiáš M, Robles-Aguilar AA, Skoblia S, Beňo Z, Innemanová P, Linhartová L, Michalíková K, Meers E. Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge. Chemosphere, 2021, 265,
CrossRef Google scholar
[26]
Moško J, Pohořelý M, Skoblia S, Fajgar R, Straka P, Soukup K, Beňo Z, Farták J, Bičáková O, Jeremiáš M, Šyc M, Meers E. Structural and chemical changes of sludge derived pyrolysis char prepared under different process temperatures. J Anal Appl Pyrolysis, 2021,
CrossRef Google scholar
[27]
Moško J, Jeremiáš M, Skoblia S, Beňo Z, Sikarwar VS, Hušek M, Wang H, Pohořelý M. Residual moisture in the sewage sludge feed significantly affects the pyrolysis process: Simulation of continuous process in a batch reactor. J Anal Appl Pyrolysis, 2022,
CrossRef Google scholar
[28]
Munoz G, Michaud AM, Liu M, Vo Duy S, Montenach D, Resseguier C, Watteau F, Sappin-Didier V, Feder F, Morvan T, Houot S, Desrosiers M, Liu J, Sauvé S. Target and nontarget screening of PFAS in biosolids, composts, and other organic waste products for land application in france. Environ Sci Technol, 2022, 56: 6056-6068,
CrossRef Google scholar
[29]
O’Hagan D. Understanding organofluorine chemistry: an introduction to the C–F bond. Chem Soc Rev, 2008, 37: 308-319,
CrossRef Google scholar
[30]
Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003 (consolidated version: 16 March 2023 October 2022), 2023
[31]
Regulation No. 474/2000 (2021) Coll. of the Ministry of Agriculture on the specification of requirements for fertilisers [Vyhláška Ministerstva zemědělství č. 474/2000 Sb., o stanovení požadavků na hnojiva] (consolidated version 01 November 2021)
[32]
Röhler K, Haluska AA, Susset B, Liu B, Grathwohl P. Long-term behavior of PFAS in contaminated agricultural soils in Germany. J Contam Hydrol, 2021, 241,
CrossRef Google scholar
[33]
Ruan T, Lin Y, Wang T, Liu R, Jiang G. Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China. Environ Sci Technol, 2015, 49: 6519-6527,
CrossRef Google scholar
[34]
Sasi PC, Alinezhad A, Yao B, Kubátová A, Golovko SA, Golovko MY, Xiao F. Effect of granular activated carbon and other porous materials on thermal decomposition of per- and polyfluoroalkyl substances: Mechanisms and implications for water purification. Water Res, 2021, 200,
CrossRef Google scholar
[35]
Semerád J, Hatasová N, Grasserová A, Černá T, Filipová A, Hanč A, Innemanová P, Pivokonský M, Cajthaml T. Screening for 32 per- and polyfluoroalkyl substances (PFAS) including GenX in sludges from 43 WWTPs located in the Czech Republic—evaluation of potential accumulation in vegetables after application of biosolids. Chemosphere, 2020, 261,
CrossRef Google scholar
[36]
Semerád J, Horká P, Filipová A, Kukla J, Holubová K, Musilová Z, Jandová K, Frouz J, Cajthaml T. The driving factors of per- and polyfluorinated alkyl substance (PFAS) accumulation in selected fish species: The influence of position in river continuum, fish feed composition, and pollutant properties. Sci Total Environ, 2022,
CrossRef Google scholar
[37]
Sörengård M, Lindh A-S, Ahrens L. Thermal desorption as a high removal remediation technique for soils contaminated with per- and polyfluoroalkyl substances (PFASs). PLoS ONE, 2020, 15,
CrossRef Google scholar
[38]
Sørmo E, Castro G, Hubert M, Licul-Kucera V, Quintanilla M, Asimakopoulos AG, Cornelissen G, Arp HPH. The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis. J Hazard Mater, 2023, 454,
CrossRef Google scholar
[39]
Stahl T, Mattern D, Brunn H. Toxicology of perfluorinated compounds. Environ Sci Eur, 2011, 23: 38,
CrossRef Google scholar
[40]
Tavasoli E, Luek JL, Malley JP, Mouser PJ. Distribution and fate of per- and polyfluoroalkyl substances (PFAS) in wastewater treatment facilities. Environ Sci Process Impacts., 2021, 23: 903-913,
CrossRef Google scholar
[41]
Thoma ED, Wright RS, George I, Krause M, Presezzi D, Villa V, Preston W, Deshmukh P, Kauppi P, Zemek PG. Pyrolysis processing of PFAS-impacted biosolids, a pilot study. J Air Waste Manag Assoc, 2022, 72: 309-318,
CrossRef Google scholar
[42]
UKZUZ (2022) Decree UKZUZ—R12026 [Rozhodnutí UKZUZ—R12026]
[43]
Wang J, Lin Z, He X, Song M, Westerhoff P, Doudrick K, Hanigan D. Critical review of thermal decomposition of per- and polyfluoroalkyl substances: mechanisms and implications for thermal treatment processes. Environ Sci Technol, 2022, 56: 5355-5370,
CrossRef Google scholar
[44]
Weber NH, Stockenhuber SP, Delva CS, Abu Fara A, Grimison CC, Lucas JA, Mackie JC, Stockenhuber M, Kennedy EM. Kinetics of decomposition of PFOS relevant to thermal desorption remediation of soils. Ind Eng Chem Res, 2021, 60: 9080-9087,
CrossRef Google scholar
[45]
Williams T, Grieco S, Bani B, Friedenthal A, White A. Removal and transformation of PFAS from biosolids in a high temperature pyrolysis system: a bench scale evaluation. Residuals Biosolids Conf, 2021,
CrossRef Google scholar
[46]
Winchell LJ, Ross JJ, Wells MJM, Fonoll X, Norton JW, Bell KY. Per- and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: a state of the science review. Water Environ Res, 2021, 93: 826-843,
CrossRef Google scholar
[47]
Xiao F, Sasi PC, Yao B, Kubátová A, Golovko SA, Golovko MY, Soli D. Thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon. Environ Sci Technol Lett, 2020, 7: 343-350,
CrossRef Google scholar
[48]
Zhang W, Liang Y. Effects of hydrothermal treatments on destruction of per- and polyfluoroalkyl substances in sewage sludge. Environ Pollut, 2021, 285,
CrossRef Google scholar
[49]
Zhang Z, Ju R, Zhou H, Chen H. Migration characteristics of heavy metals during sludge pyrolysis. Waste Manage, 2021, 120: 25-32,
CrossRef Google scholar
[50]
Zhang W, Jiang T, Liang Y. Stabilization of per- and polyfluoroalkyl substances (PFAS) in sewage sludge using different sorbents. J Hazard Mater Adv, 2022, 6,
CrossRef Google scholar
[51]
Zhang Z, Sarkar D, Biswas JK, Datta R. Biodegradation of per- and polyfluoroalkyl substances (PFAS): a review. Biores Technol, 2022, 344,
CrossRef Google scholar
Funding
Ministerstvo Zemědělství(QK21020022); Akademie Věd ?eské Republiky(AV 21 – Sustainable energy); Vysoká ?kola Chemicko-technologická v Praze(A1_FTOP_2024_001); Technology Agency of the Czech Republic(SS02030008)

Accesses

Citations

Detail

Sections
Recommended

/