Green supercapacitor patterned by synthesizing MnO/laser-induced-graphene hetero-nanostructures on wood via femtosecond laser pulses

Young-Ryeul Kim, Han Ku Nam, Younggeun Lee, Dongwook Yang, Truong-Son Dinh Le, Seung-Woo Kim, Sangbaek Park, Young-Jin Kim

Biochar ›› 2024, Vol. 6 ›› Issue (1) : 36. DOI: 10.1007/s42773-024-00320-7

Green supercapacitor patterned by synthesizing MnO/laser-induced-graphene hetero-nanostructures on wood via femtosecond laser pulses

Author information +
History +

Abstract

Eco-friendly next-generation energy storage devices with high energy density are required to meet the increasing demand for sustainable and green electronics. However, their manufacturing requires a lot of chemical precursors and is usually accompanied by chemical waste; it also involves laborious and time-consuming processes such as mixing, heat treating, casting, and drying. Here, we proposed that mass production of microsupercapacitors (MSCs) for green electronics can be achieved by embedding manganese monoxide (MnO) on wood-derived laser-induced-graphene (LIG) via femtosecond laser direct writing (FsLDW) technique. The direct synthesis of MnO/LIG hetero-nanostructures on wood was realized by drop-casting a small amount of precursor between the first and second FsLDW. The preceding FsLDW thermochemically converted wood into LIG while the following FsLDW converted the precursor into MnO, resulting in MnO/LIG hetero-nanostructures. As-fabricated MnO/LIG MSC exhibited enhanced areal capacitance (35.54 mF cm−2 at 10 mV s−1) and capacitance retention (approximately 82.31% after 10,000 cycles) with only a small inclusion of Mn sources (0.66 mg cm−2) and short production time (10 min cm−2), which attributes to operate light-emitting diodes, digital clocks, and electronic paper as well. This approach enables the green, facile, fast, and cost-effective fabrication of future sustainable energy storage devices from biomass for next-generation green electronics.

Highlights

MnO/LIG based high-density energy storage devices were fabricated on natural wood.

Fabrication process was eco-friendly, which required a precursor up to 0.66 mg cm−2.

2.50 times enhancement of areal capacitance at a current density of 1000 µA cm−2.

Microsupercapacitor synthesis time was fast up to 10 min cm−2.

It was a facile process via a femtosecond laser.

Keywords

Laser-induced graphene / Green energy storage / Microsupercapacitors / Laser direct writing / Ultrafast pulse / Biomass

Cite this article

Download citation ▾
Young-Ryeul Kim, Han Ku Nam, Younggeun Lee, Dongwook Yang, Truong-Son Dinh Le, Seung-Woo Kim, Sangbaek Park, Young-Jin Kim. Green supercapacitor patterned by synthesizing MnO/laser-induced-graphene hetero-nanostructures on wood via femtosecond laser pulses. Biochar, 2024, 6(1): 36 https://doi.org/10.1007/s42773-024-00320-7

References

[1]
Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HMN. Lignocellulose: a sustainable material to produce value-added products with a zero waste approach—a review. Int J Biol Macromol, 2017, 99: 308-318,
CrossRef Google scholar
[2]
Azadfar M, Wolcott MP. Surface characterization of powdered cellulose activated by potassium hydroxide in dry condition through ball milling. Polysaccharides, 2020, 1(1): 80-89,
CrossRef Google scholar
[3]
Burhenne L, Messmer J, Aicher T, Laborie M-P. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrol, 2013, 101: 177-184,
CrossRef Google scholar
[4]
Carvalho AF, Fernandes AJS, Martins R, Fortunato E, Costa FM (2020) Laser-induced graphene piezoresistive sensors synthesized directly on cork insoles for gait analysis. Adv Mater Technol. 5(12). https://doi.org/10.1002/admt.202000630
[5]
Chen M, Ogunseitan OA. Zero E-waste: Regulatory impediments and blockchain imperatives. Front Environ Sci Eng, 2021, 15(6): 114,
CrossRef Google scholar
[6]
Chen C, Kuang Y, Zhu S, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn SJ, Hu L. Structure–property–function relationships of natural and engineered wood. Nat Rev Mater, 2020, 5(9): 642-666,
CrossRef Google scholar
[7]
Chih-Lin I, Han S, Bian S. Energy-efficient 5G for a greener future. Nat Electron, 2020, 3(4): 182-184,
CrossRef Google scholar
[8]
Chyan Y, Ye R, Li Y, Singh SP, Arnusch CJ, Tour JM. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano, 2018, 12(3): 2176-2183,
CrossRef Google scholar
[9]
Correia R, Deuermeier J, Correia MR, Vaz Pinto J, Coelho J, Fortunato E, Martins R. Biocompatible Parylene-C laser-induced graphene electrodes for microsupercapacitor applications. ACS Appl Mater Interfaces, 2022, 14(41): 46427-46438,
CrossRef Google scholar
[10]
Deljoo B, Tan H, Suib SL, Aindow M. Thermally activated structural transformations in manganese oxide nanoparticles under air and argon atmospheres. J Mater Sci, 2020, 55(17): 7247-7258,
CrossRef Google scholar
[11]
Di Blasi C. Combustion and gasification rates of lignocellulosic chars. Prog Energy Combust Sci, 2009, 35(2): 121-140,
CrossRef Google scholar
[12]
Dreimol CH, Guo H, Ritter M, Keplinger T, Ding Y, Günther R, Poloni E, Burgert I, Panzarasa G. Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications. Nat Commun, 2022, 13(1): 3680,
CrossRef Google scholar
[13]
Ehsani A, Parsimehr H. Electrochemical energy storage electrodes from fruit biochar. Adv Coll Interface Sci, 2020, 284: 102263,
CrossRef Google scholar
[14]
Ehsani A, Parsimehr H. Electrochemical energy storage electrodes via citrus fruits derived carbon: a minireview. Chem Rec, 2020, 20(8): 820-830,
CrossRef Google scholar
[15]
Emmanuel V, Odile B, Céline R. FTIR spectroscopy of woods: a new approach to study the weathering of the carving face of a sculpture. Spectrochim Acta Part A Mol Biomol Spectrosc, 2015, 136: 1255-1259,
CrossRef Google scholar
[16]
Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol, 2013, 8(4): 235-246,
CrossRef Google scholar
[17]
Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39(6): 937-950,
CrossRef Google scholar
[18]
Guo D, Yu X, Shi W, Luo Y, Li Q, Wang T. Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high-performance supercapacitors. J Mater Chem A, 2014, 2(23): 8833,
CrossRef Google scholar
[19]
Guo H, Büchel M, Li X, Wäckerlin A, Chen Q, Burgert I. Dictating anisotropic electric conductivity of a transparent copper nanowire coating by the surface structure of wood. J R Soc Interface, 2018, 15(142): 20170864,
CrossRef Google scholar
[20]
Han X, Ye R, Chyan Y, Wang T, Zhang C, Shi L, Zhang T, Zhao Y, Tour JM. Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis. ACS Appl Nano Mater, 2018, 1(9): 5053-5061,
CrossRef Google scholar
[21]
Imbrogno A, Islam J, Santillo C, Castaldo R, Sygellou L, Larrigy C, Murray R, Vaughan E, Hoque MdK, Quinn AJ, Iacopino D. Laser-induced graphene supercapacitors by direct laser writing of cork natural substrates. ACS Appl Electron Mater, 2022, 4(4): 1541-1551,
CrossRef Google scholar
[22]
Irimia-Vladu M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev, 2014, 43(2): 588-610,
CrossRef Google scholar
[23]
Jung Y, Min J, Choi J, Bang J, Jeong S, Pyun KR, Ahn J, Cho Y, Hong S, Hong S, Lee J, Ko SH. Smart paper electronics by laser-induced graphene for biodegradable real-time food spoilage monitoring. Appl Mater Today, 2022, 29: 101589,
CrossRef Google scholar
[24]
Hai-Yong K, Schoenung JM (2004) Used consumer electronics: a comparative analysis of materials recycling technologies. In: IEEE International Symposium on Electronics and the Environment, 2004. Conference Record. 2004, pp 226–230. https://doi.org/10.1109/ISEE.2004.1299720
[25]
Kim Y-J, Le T-SD, Nam HK, Yang D, Kim B. Wood-based flexible graphene thermistor with an ultra-high sensitivity enabled by ultraviolet femtosecond laser pulses. CIRP Ann, 2021, 70(1): 443-446,
CrossRef Google scholar
[26]
Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim Acta, 2000, 45(15–16): 2483-2498,
CrossRef Google scholar
[27]
Kulyk B, Silva BFR, Carvalho AF, Silvestre S, Fernandes AJS, Martins R, Fortunato E, Costa FM. Laser-induced graphene from paper for mechanical sensing. ACS Appl Mater Interfaces, 2021, 13(8): 10210-10221,
CrossRef Google scholar
[28]
Laine J, Yunes S. Effect of the preparation method on the pore size distribution of activated carbon from coconut shell. Carbon, 1992, 30(4): 601-604,
CrossRef Google scholar
[29]
Le TD, Park S, An J, Lee PS, Kim Y (2019) Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv Funct Mater. 29(33). https://doi.org/10.1002/adfm.201902771
[30]
Le TD, Lee YA, Nam HK, Jang KY, Yang D, Kim B, Yim K, Kim S, Yoon H, Kim Y (2022) Green flexible graphene–inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses. Adv Funct Mater. 32(20). https://doi.org/10.1002/adfm.202107768
[31]
Li W, Liu Q, Zhang Y, Li C, He Z, Choy WCH, Low PJ, Sonar P, Kyaw AKK (2020) Biodegradable materials and green processing for green electronics. Adv Mater. 32(33). https://doi.org/10.1002/adma.202001591
[32]
Li T, Chen C, Brozena AH, Zhu JY, Xu L, Driemeier C, Dai J, Rojas OJ, Isogai A, Wågberg L, Hu L. Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590(7844): 47-56,
CrossRef Google scholar
[33]
Liang JW, Li KH, Kang CH, Braic L, Kiss AE, Zoita NC, Ng TK, Ooi BS (2020) Characterization of epitaxial titanium nitride mediated single-crystal nickel oxide grown on MgO-(100) and Si-(100). AIP Adv. 10(6). https://doi.org/10.1063/5.0012362
[34]
Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, Yacaman MJ, Yakobson BI, Tour JM. Laser-induced porous graphene films from commercial polymers. Nat Commun, 2014, 5(1): 5714,
CrossRef Google scholar
[35]
Lin Y, Zhao S, Qian J, Xu N, Liu X-Q, Sun L-B, Li W, Chen Z, Wu Z. Petal cell-derived MnO nanoparticle-incorporated biocarbon composite and its enhanced lithium storage performance. J Mater Sci, 2020, 55(5): 2139-2154,
CrossRef Google scholar
[36]
Lu K, Ma Y, Ye J. Combination of chemical foaming strategy and laser-induced graphene technology for enhanced paper-based microsupercapacitor. J Power Sourc, 2022, 535: 231488,
CrossRef Google scholar
[37]
Lu L, Zhang D, Xie Y, Wang W. A stretchable, high-voltage and biobased microsupercapacitor using laser induced graphene/MnOx electrodes on cotton cloth. J Energy Storage, 2022, 51: 104458,
CrossRef Google scholar
[38]
Ma W, Chen S, Yang S, Chen W, Weng W, Zhu M. Bottom-up fabrication of activated carbon fiber for all-solid-state supercapacitor with excellent electrochemical performance. ACS Appl Mater Interfaces, 2016, 8(23): 14622-14627,
CrossRef Google scholar
[39]
Mahmood F, Zhang H, Lin J, Wan C. Laser-induced graphene derived from kraft lignin for flexible supercapacitors. ACS Omega, 2020, 5(24): 14611-14618,
CrossRef Google scholar
[40]
Marques AC, Cardoso AR, Martins R, Sales MGF, Fortunato E. Laser-induced graphene-based platforms for dual biorecognition of molecules. ACS Appl Nano Mater, 2020, 3(3): 2795-2803,
CrossRef Google scholar
[41]
Martins R. Materials as activator of future global science and technology challenges. Prog Nat Sci: Mater Int, 2021, 31(6): 785-791,
CrossRef Google scholar
[42]
Md Salim R, Asik J, Sarjadi MS. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci Technol, 2021, 55(2): 295-313,
CrossRef Google scholar
[43]
Mehta S, Jha S, Liang H. Lignocellulose materials for supercapacitor and battery electrodes: a review. Renew Sustain Energy Rev, 2020, 134: 110345,
CrossRef Google scholar
[44]
Mei B-A, Munteshari O, Lau J, Dunn B, Pilon L. Physical interpretations of Nyquist plots for EDLC electrodes and devices. J Phys Chem C, 2018, 122(1): 194-206,
CrossRef Google scholar
[45]
Murray V, Hall DS, Dahn JR. A guide to full coin cell making for academic researchers. J Electrochem Soc, 2019, 166(2): A329-A333,
CrossRef Google scholar
[46]
Nam HK, Le TD, Yang D, Kim B, Lee Y, Hwang JS, Kim Y, Yoon H, Kim S, Kim Y (2023) Smart wooden home enabled by direct-written laser-induced graphene. Adv Mater Technol. 8(9). https://doi.org/10.1002/admt.202201952
[47]
Parsimehr H, Ehsani A. Algae-based electrochemical energy storage devices. Green Chem, 2020, 22(23): 8062-8096,
CrossRef Google scholar
[48]
Parsimehr H, Ehsani A. Corn-based electrochemical energy storage devices. Chem Rec, 2020, 20(10): 1163-1180,
CrossRef Google scholar
[49]
Parsimehr H, Ehsani A, Arachchige Dumith Madushanka Jayathilaka S, Arachchige Dumith W, Ramakrishna S. Energy harvesting/storage and environmental remediation via hot drinks wastes. Chem Record, 2021, 21(5): 1098-1118,
CrossRef Google scholar
[50]
Pawlak R, Tomczyk M, Walczak M, Mizeraczyk J, Tański M, Garasz K. Selected problems in IR and UV laser micromachining of Si and GaAs in submillimeter scale. Microelectron Eng, 2016, 151: 47-52,
CrossRef Google scholar
[51]
Phiri J, Dou J, Vuorinen T, Gane PAC, Maloney TC. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega, 2019, 4(19): 18108-18117,
CrossRef Google scholar
[52]
Piñeiro-Prado I, Salinas-Torres D, Ruiz-Rosas R, Morallón E, Cazorla-Amorós D (2016) Design of activated carbon/activated carbon asymmetric capacitors. Front Mater. 3. https://doi.org/10.3389/fmats.2016.00016
[53]
Qiao Y, Li N, Dong M, Jia P, Ma C, Zhang T, Jiao T. MOF-derived MnO/C nanocomposites for high-performance supercapacitors. Nanomaterials, 2022, 12(23): 4257,
CrossRef Google scholar
[54]
Ramesh M, Palanikumar K, Reddy KH. Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev, 2017, 79: 558-584,
CrossRef Google scholar
[55]
Raza W, Ali F, Raza N, Luo Y, Kim K-H, Yang J, Kumar S, Mehmood A, Kwon EE. Recent advancements in supercapacitor technology. Nano Energy, 2018, 52: 441-473,
CrossRef Google scholar
[56]
Silvestre SL, Pinheiro T, Marques AC, Deuermeier J, Coelho J, Martins R, Pereira L, Fortunato E. Cork derived laser-induced graphene for sustainable green electronics. Flex Print Electron, 2022, 7(3): 035021,
CrossRef Google scholar
[57]
Simon P, Gogotsi Y. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors. Phil Trans R Soc A Math Phys Eng Sci, 2010, 368(1923): 3457-3467,
CrossRef Google scholar
[58]
Sopha H, Mirza I, Turčičova H, Pavlinak D, Michalicka J, Krbal M, Rodriguez-Pereira J, Hromadko L, Novák O, Mužík J, Smrž M, Kolibalova E, Goodfriend N, Bulgakova NM, Mocek T, Macak JM. Laser-induced crystallization of anodic TiO 2 nanotube layers. RSC Adv, 2020, 10(37): 22137-22145,
CrossRef Google scholar
[59]
Thakur S, Chaudhary J, Sharma B, Verma A, Tamulevicius S, Thakur VK. Sustainability of bioplastics: opportunities and challenges. Curr Opin Green Sustain Chem, 2018, 13: 68-75,
CrossRef Google scholar
[60]
Tholkappiyan R, Naveen AN, Vishista K, Hamed F. Investigation on the electrochemical performance of hausmannite Mn3O4 nanoparticles by ultrasonic irradiation assisted co-precipitation method for supercapacitor electrodes. J Taibah Univ Sci, 2018, 12(5): 669-677,
CrossRef Google scholar
[61]
Vashisth A, Kowalik M, Gerringer JC, Ashraf C, van Duin ACT, Green MJ. ReaxFF simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites. ACS Appl Nano Mater, 2020, 3(2): 1881-1890,
CrossRef Google scholar
[62]
Wan J, Song J, Yang Z, Kirsch D, Chao J, Rui X, Dai J, Zhu M, Xu L, Chen C, Wang Y, Wang Y, Hitz E, Lacey S. D, Li Y, Yang B, Hu L (2017) Highly Anisotropic Conductors. Adv Mater 29(41). https://doi.org/10.1002/adma.201703331
[63]
Wang L, Mu G, Tian C, Sun L, Zhou W, Yu P, Yin J, Fu H. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. Chemsuschem, 2013, 6(5): 880-889,
CrossRef Google scholar
[64]
Xu J, Peng Y, Xia Q, Hu J, Wu X. Facile synthesis of porous manganese oxide/carbon composite nanowires for energy storage. New J Chem, 2017, 41(17): 9002-9007,
CrossRef Google scholar
[65]
Xu R, Wang Z, Gao L, Wang S, Zhao J. Effective design of MnO2 nanoparticles embedded in laser-induced graphene as shape-controllable electrodes for flexible planar microsupercapacitors. Applied Surface Science, 2022, 571(1): 151385,
CrossRef Google scholar
[66]
Yadav P, Basu A, Suryawanshi A, Game O, Ogale S (2016) Highly stable laser-scribed flexible planar microsupercapacitor using mushroom derived carbon electrodes. Adv Mater Interfaces. 3(11). https://doi.org/10.1002/admi.201600057
[67]
Ye R, Chyan Y, Zhang J, Li Y, Han X, Kittrell C, Tour JM (2017) Laser-induced graphene formation on wood. Adv Mater. 29(37). https://doi.org/10.1002/adma.201702211
[68]
Ye R, James DK, Tour JM. Laser-induced graphene. Acc Chem Res, 2018, 51(7): 1609-1620,
CrossRef Google scholar
[69]
Zaki MI, Hasan MA, Pasupulety L, Kumari K. Thermochemistry of manganese oxides in reactive gas atmospheres: probing redox compositions in the decomposition course MnO2→MnO. Thermochim Acta, 1997, 303(2): 171-181,
CrossRef Google scholar
[70]
Zhang Z, Song M, Hao J, Wu K, Li C, Hu C. Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon, 2018, 127: 287-296,
CrossRef Google scholar
[71]
Zheng M, Zhang H, Gong X, Xu R, Xiao Y, Dong H, Liu X, Liu Y. A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area. Nanoscale Res Lett, 2013, 8(1): 166,
CrossRef Google scholar
[72]
Zhu C, Dong X, Mei X, Gao M, Wang K, Zhao D. Direct laser writing of MnO2 decorated graphene as flexible supercapacitor electrodes. J Mater Sci, 2020, 55(36): 17108-17119,
CrossRef Google scholar
[73]
Zhu M, Jia C, Wang Y, Fang Z, Dai J, Xu L, Huang D, Wu J, Li Y, Song J, Yao Y, Hitz E, Wang Y, Hu L. Isotropic paper directly from anisotropic wood: top-down green transparent substrate toward biodegradable electronics. ACS Appl Mater Inter, 2018, 10(34): 28566-28571,
CrossRef Google scholar
Funding
National Research Foundation of the Republic of Korea(2021R1A4A1031660); Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(321077-2); Korea Forest Service(2023488B10-2325-AA01); KAIST(G-core project); National Research Foundation of Korea(RS-2023-00217581)

Accesses

Citations

Detail

Sections
Recommended

/