Biochar reduced the mineralization of native and added soil organic carbon: evidence of negative priming and enhanced microbial carbon use efficiency

Subin Kalu, Aino Seppänen, Kevin Z. Mganga, Outi-Maaria Sietiö, Bruno Glaser, Kristiina Karhu

Biochar ›› 2024, Vol. 6 ›› Issue (1) : 0. DOI: 10.1007/s42773-023-00294-y

Biochar reduced the mineralization of native and added soil organic carbon: evidence of negative priming and enhanced microbial carbon use efficiency

Author information +
History +

Abstract

Biochar has been widely recognized for its potential to increase carbon (C) sequestration and mitigate climate change. This potential is affected by how biochar interacts with native soil organic carbon (SOC) and fresh organic substrates added to soil. However, only a few studies have been conducted to understand this interaction. To fill this knowledge gap, we conducted a 13C-glucose labelling soil incubation for 6 months using fine-textured agricultural soil (Stagnosol) with two different biochar amounts. Biochar addition reduced the mineralization of SOC and 13C-glucose and increased soil microbial biomass carbon (MBC) and microbial carbon use efficiency (CUE). The effects were found to be additive i.e., higher biochar application rate resulted in lower mineralization of SOC and 13C-glucose. Additionally, soil density fractionation after 6 months revealed that most of the added biochar particles were recovered in free particulate organic matter (POM) fraction. Biochar also increased the retention of 13C in free POM fraction, indicating that added 13C-glucose was preserved within the biochar particles. The measurement of 13C from the total amino sugar fraction extracted from the biochar particles suggested that biochar increased the microbial uptake of added 13C-glucose and after they died, the dead microbial residues (necromass) accumulated inside biochar pores. Biochar also increased the proportion of occluded POM, demonstrating that increased soil occlusion following biochar addition reduced SOC mineralization. Overall, the study demonstrates the additional C sequestering potential of biochar by inducing negative priming of native SOC as well as increasing CUE, resulting in the formation and stabilization of microbial necromass.

Highlights

Biochar showed additional C storage ability by preserving SOC from mineralization (negative priming) and stabilizing added labile organic substrate

Biochar (30 Mg ha−1) significantly increased microbial carbon use efficiency

Biochar increased the formation of stable microbial residues (necromass) from a labile substrate (glucose) added to soil, as indicated by 13C recovery in amino sugars

Keywords

Biochar / Carbon sequestration / Carbon use efficiency / 13C-labelling / Soil microbial necromass / Priming effect

Cite this article

Download citation ▾
Subin Kalu, Aino Seppänen, Kevin Z. Mganga, Outi-Maaria Sietiö, Bruno Glaser, Kristiina Karhu. Biochar reduced the mineralization of native and added soil organic carbon: evidence of negative priming and enhanced microbial carbon use efficiency. Biochar, 2024, 6(1): 0 https://doi.org/10.1007/s42773-023-00294-y

References

[]
Akpinar D, Tian J, Shepherd E, Imhoff PT. Impact of wood-derived biochar on the hydrologic performance of bioretention media: effects on aggregation, root growth, and water retention. J Environ Manage, 2023, 339,
CrossRef Google scholar
[]
Buckeridge KM, La Rosa AF, Mason KE, Whitaker J, McNamara NP, Grant HK, Ostle NJ. Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol Biochem, 2020, 149, coi: 1:CAS:528:DC%2BB3cXhslejt73M
CrossRef Google scholar
[]
Dempster DN, Gleeson DB, Solaiman ZM, Jones DL, Murphy DV. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil, 2012, 354: 311-324, coi: 1:CAS:528:DC%2BC38XlvFWgtbc%3D
CrossRef Google scholar
[]
Dippold MA, Boesel S, Gunina A, Kuzyakov Y, Glaser B. Improved δ13C analysis of amino sugars in soil by ion chromatography–oxidation–isotope ratio mass spectrometry. Rapid Commun Mass Spectrom, 2014, 28: 569-576, coi: 1:CAS:528:DC%2BC2cXisFSjsbY%3D
CrossRef Google scholar
[]
Dufrêne YF. Sticky microbes: forces in microbial cell adhesion. Trends Microbiol, 2015, 23: 376-382, coi: 1:CAS:528:DC%2BC2MXisVOmsbo%3D
CrossRef Google scholar
[]
Fang Y, Singh B, Singh BP. Effect of temperature on biochar priming effects and its stability in soils. Soil Biol Biochem, 2015, 80: 136-145, coi: 1:CAS:528:DC%2BC2cXhslyrtLjN
CrossRef Google scholar
[]
Fang Y, Singh BP, Luo Y, Boersma M, Van Zwieten L. Biochar carbon dynamics in physically separated fractions and microbial use efficiency in contrasting soils under temperate pastures. Soil Biol Biochem, 2018, 116: 399-409, coi: 1:CAS:528:DC%2BC2sXhslyksb%2FP
CrossRef Google scholar
[]
Farrell M, Kuhn TK, Macdonald LM, Maddern TM, Murphy DV, Hall PA, Singh BP, Baumann K, Krull ES, Baldock JA. Microbial utilisation of biochar-derived carbon. Sci Tot Environ, 2013, 465: 288-297, coi: 1:CAS:528:DC%2BC3sXms1eksbs%3D
CrossRef Google scholar
[]
Field CB, Mach KJ. Rightsizing carbon dioxide removal. Science, 2017, 356: 706-707, coi: 1:CAS:528:DC%2BC2sXpsVKksrg%3D
CrossRef Google scholar
[]
Fu Y, Luo Y, Auwal M, Singh BP, Van Zwieten L, Xu J. Biochar accelerates soil organic carbon mineralization via rhizodeposit-activated Actinobacteria. Biol Fertil Soils, 2022, 58: 565-577, coi: 1:CAS:528:DC%2BB38XhsFyjsbjN
CrossRef Google scholar
[]
Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry, 2016, 127: 173-188, coi: 1:CAS:528:DC%2BC28Xislagurw%3D
CrossRef Google scholar
[]
Giagnoni L, Renella G. Effects of biochar on the C use efficiency of soil microbial communities: components and mechanisms. Environments, 2022, 9: 138,
CrossRef Google scholar
[]
Giannetta B, Plaza C, Cassetta M, Mariotto G, Benavente-Ferraces I, García-Gil JC, Panettieri M, Zaccone C. The effects of biochar on soil organic matter pools are not influenced by climate change. J Environ Manage, 2023, 341, coi: 1:CAS:528:DC%2BB3sXpvFSmsrk%3D
CrossRef Google scholar
[]
Glaser B, Birk JJ. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de índio). Geochim Cosmochim Acta, 2012, 82: 39-51, coi: 1:CAS:528:DC%2BC38XjtFKmtL4%3D
CrossRef Google scholar
[]
Glaser B, Haumaier L, Guggenberger G, Zech W. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 2001, 88: 37-41, coi: 1:CAS:528:DC%2BD3MXptlKisw%3D%3D
CrossRef Google scholar
[]
Gross A, Bromm T, Glaser B. Soil organic carbon sequestration after biochar application: a global meta-analysis. Agronomy, 2021, 11: 2474, coi: 1:CAS:528:DC%2BB38Xkslyrt78%3D
CrossRef Google scholar
[]
Guenet B, Leloup J, Raynaud X, Bardoux G, Abbadie L. Negative priming effect on mineralization in a soil free of vegetation for 80 years. Eur J Soil Sci, 2010, 61: 384-391, coi: 1:CAS:528:DC%2BC3cXot1artLc%3D
CrossRef Google scholar
[]
Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agri Ecosyst Environ, 2015, 206: 46-59, coi: 1:CAS:528:DC%2BC2MXks1aqsrs%3D
CrossRef Google scholar
[]
Hagemann N, Joseph S, Schmidt H-P, Kammann CI, Harter J, Borch T, Young RB, Varga K, Taherymoosavi S, Elliott KW, McKenna A, Albu M, Mayrhofer C, Obst M, Conte P, Dieguez-Alonso A, Orsetti S, Subdiaga E, Behrens S, Kappler A. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat Commun, 2017, 8: 1089, coi: 1:CAS:528:DC%2BC1cXovFynsrY%3D
CrossRef Google scholar
[]
Hartley IP, Hopkins DW, Sommerkorn M, Wookey PA. The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biol Biochem, 2010, 42: 92-100, coi: 1:CAS:528:DC%2BD1MXhsVGrtb7E
CrossRef Google scholar
[]
IPCC (2022) Climate change 2022: Mitigation of climate change. Working group III contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change
[]
IUSS Working Group WRB (2007) World reference base for soil resources, first update. World Soil Resources Report 103
[]
Joseph S, Cowie AL, Van Zwieten L, Bolan N, Budai A, Buss W, Cayuela ML, Graber ER, Ippolito JA, Kuzyakov Y, Luo Y, Ok YS, Palansooriya KN, Shepherd J, Stephens S, Weng Z, Lehmann J. How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 2021, 13: 1731-1764, coi: 1:CAS:528:DC%2BB3MXit1elurbM
CrossRef Google scholar
[]
Kalu S, Kulmala L, Zrim J, Peltokangas K, Tammeorg P, Rasa K, Kitzler B, Pihlatie M, Karhu K. Potential of biochar to reduce greenhouse gas emissions and increase nitrogen use efficiency in boreal arable soils in the long-term. Front Environ Sci, 2022, 10,
CrossRef Google scholar
[]
Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M. Mineral protection of soil carbon counteracted by root exudates. Nat Clim Change, 2015, 5: 588-595, coi: 1:CAS:528:DC%2BC2MXlvVent7c%3D
CrossRef Google scholar
[]
Kiani M, Raave H, Simojoki A, Tammeorg O, Tammeorg P. Recycling lake sediment to agriculture: effects on plant growth, nutrient availability, and leaching. Sci Total Environ, 2021, 753, coi: 1:CAS:528:DC%2BB3cXhslOjur3I
CrossRef Google scholar
[]
Kopittke PM, Berhe AA, Carrillo Y, Cavagnaro TR, Chen D, Chen Q-L, Román Dobarco M, Dijkstra FA, Field DJ, Grundy MJ, He J-Z, Hoyle FC, Kögel-Knabner I, Lam SK, Marschner P, Martinez C, McBratney AB, McDonald-Madden E, Menzies NW, Mosley LM, Mueller CW, Murphy DV, Nielsen UN, O’Donnell AG, Pendall E, Pett-Ridge J, Rumpel C, Young IM, Minasny B. Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Crit Rev Environ Sci Technol, 2022, 52: 4308-4324,
CrossRef Google scholar
[]
Kuzyakov Y. Factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci, 2002, 165: 382-396, coi: 1:CAS:528:DC%2BD38XmsVKgtb8%3D
CrossRef Google scholar
[]
Lehmann J. Bio-energy in the black. Front Ecol Environ, 2007, 5: 381-387,
CrossRef Google scholar
[]
Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature, 2015, 528: 60-68, coi: 1:CAS:528:DC%2BC2MXhvVOqs7fE
CrossRef Google scholar
[]
Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota—a review. Soil Biol Biochem, 2011, 43(9): 1812-1836, coi: 1:CAS:528:DC%2BC3MXhtVWrt7fI
CrossRef Google scholar
[]
Lehmann J, Cowie A, Masiello CA, Kammann C, Woolf D, Amonette JE, Cayuela ML, Camps-Arbestain M, Whitman T. Biochar in climate change mitigation. Nat Geosci, 2021, 14: 883-892, coi: 1:CAS:528:DC%2BB3MXis1Kmtr%2FE
CrossRef Google scholar
[]
Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol, 2017, 2: 17105, coi: 1:CAS:528:DC%2BC2sXht1ensbvP
CrossRef Google scholar
[]
Liu Z, Wu X, Liu W, Bian R, Ge T, Zhang W, Zheng J, Drosos M, Liu X, Zhang X, Cheng K, Li L, Pan G. Greater microbial carbon use efficiency and carbon sequestration in soils: amendment of biochar versus crop straws. GCB Bioenergy, 2020, 12: 1092-1103, coi: 1:CAS:528:DC%2BB3cXisFKjs7fO
CrossRef Google scholar
[]
Luo Y, Durenkamp M, De Nobili M, Lin Q, Devonshire BJ, Brookes PC. Microbial biomass growth, following incorporation of biochars produced at 350 °C or 700 °C, in a silty-clay loam soil of high and low pH. Soil Biol Biochem, 2013, 57: 513-523, coi: 1:CAS:528:DC%2BC3sXitVGisLs%3D
CrossRef Google scholar
[]
Maestrini B, Nannipieri P, Abiven S. A meta-analysis on pyrogenic organic matter induced priming effect. GCB Bioenergy, 2015, 7: 577-590, coi: 1:CAS:528:DC%2BC2MXhtVOktrbM
CrossRef Google scholar
[]
Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol, 2012, 196: 79-91, coi: 1:CAS:528:DC%2BC38Xht1Cis7fL
CrossRef Google scholar
[]
Manzoni S, Čapek P, Porada P, Thurner M, Winterdahl M, Beer C, Brüchert V, Frouz J, Herrmann AM, Lindahl BD, Lyon SW, Šantrůčková H, Vico G, Way D. Reviews and syntheses: Carbon use efficiency from organisms to ecosystems—definitions, theories, and empirical evidence. Biogeosciences, 2018, 15: 5929-5949, coi: 1:CAS:528:DC%2BC1MXitFSnsbfF
CrossRef Google scholar
[]
Melas GB, Ortiz O, Alacañiz JM. Can biochar protect labile organic matter against mineralization in soil?. Pedosphere, 2017, 27: 822-831, coi: 1:CAS:528:DC%2BB3MXit1Ggt7Y%3D
CrossRef Google scholar
[]
Mganga KZ, Sietiö O-M, Meyer N, Poeplau C, Adamczyk S, Biasi C, Kalu S, Räsänen M, Ambus P, Fritze H, Pellikka PKE, Karhu K. Microbial carbon use efficiency along an altitudinal gradient. Soil Biol Biochem, 2022, 173, coi: 1:CAS:528:DC%2BB38XitFKnsrzP
CrossRef Google scholar
[]
Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen ZS, Cheng K, Das BS, Field DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O'Rourke S, Richer-de-Forges AC, Odeh I, Padarian J, Paustian K, Pan G, Poggio L, Savin I, Stolbovoy V, Stockmann U, Sulaeman Y, Tsui C-C, Vågen T-G, van Wesemael B, Winowiecki L. Soil carbon 4 per mille. Geoderma, 2017, 292: 59-86,
CrossRef Google scholar
[]
Pan SY, Dong CD, Su JF, Wang PY, Chen CW, Chang JS, Kim H, Huang CP, Hung CM. The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems. Sustainability, 2021, 13(10): 5612, coi: 1:CAS:528:DC%2BB3MXitFygur%2FP
CrossRef Google scholar
[]
Pei J, Li J, Mia S, Singh B, Wu J, Dijkstra FA. Biochar aging increased microbial carbon use efficiency but decreased biomass turnover time. Geoderma, 2021, 382, coi: 1:CAS:528:DC%2BB3MXmslGkt7o%3D
CrossRef Google scholar
[]
Pietikäinen J, Kiikkilä O, Fritze H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 2000, 89(2): 231-242,
CrossRef Google scholar
[]
R Core Team (2022) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
[]
Singh BP, Cowie AL. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep, 2014, 4: 3687, coi: 1:CAS:528:DC%2BC2cXjslCitLk%3D
CrossRef Google scholar
[]
Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett, 2013, 16: 930-939,
CrossRef Google scholar
[]
Soinne H, Hovi J, Tammeorg P, Turtola E. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma, 2014, 219–220: 162-167, coi: 1:CAS:528:DC%2BC2cXjtVGktrw%3D
CrossRef Google scholar
[]
Tao F, Huang Y, Hungate BA, Manzoni S, Frey SD, Schmidt MWI, Reichstein M, Carvalhais N, Ciais P, Jiang L, Lehmann J, Wang Y-P, Houlton BZ, Ahrens B, Mishra U, Hugelius G, Hocking TD, Lu X, Shi Z, Viatkin K, Vargas R, Yigini Y, Omuto C, Malik AA, Guillermo P, Cuevas-Corona R, Di Paolo LE, Luotto I, Liao C, Liang Y-S, Saynes VS, Huang X, Luo Y. Microbial carbon use efficiency promotes global soil carbon storage. Nature, 2023, 618: 981-985, coi: 1:CAS:528:DC%2BB3sXhtVyisr7L
CrossRef Google scholar
[]
Vance ED, Brookes PC, Jenkinson DS. Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol Biochem, 1987, 19: 697-702, coi: 1:CAS:528:DyaL1cXjs1Kqsw%3D%3D
CrossRef Google scholar
[]
Wang J, Xiong Z, Kuzyakov Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy, 2016, 8: 512-523, coi: 1:CAS:528:DC%2BC28XlslWjuro%3D
CrossRef Google scholar
[]
Weng Z, Van Zwieten L, Singh BP, Kimber S, Morris S, Cowie A, Macdonald LM. Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system. Soil Biol Biochem, 2015, 90: 111-121, coi: 1:CAS:528:DC%2BC2MXhtlCru77I
CrossRef Google scholar
[]
Weng Z, Van Zwieten L, Singh BP, Tavakkoli E, Joseph S, Macdonald LM, Rose TJ, Rose MT, Kimber SWL, Morris S, Cozzolino D, Araujo JR, Archanjo BS, Cowie A. Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat Clim Change, 2017, 7: 371-376, coi: 1:CAS:528:DC%2BC2sXmvVChsL0%3D
CrossRef Google scholar
[]
Weng Z, Van Zwieten L, Tavakkoli E, Rose MT, Singh BP, Joseph S, Macdonald LM, Kimber S, Morris S, Rose TJ, Archanjo BS, Tang C, Franks AE, Diao H, Schweizer S, Tobin MJ, Klein AR, Vongsvivut J, Chang SLY, Kopittke PM, Cowie A. Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling. Nat Comm, 2022, 13: 5177, coi: 1:CAS:528:DC%2BB38XitlahtbrO
CrossRef Google scholar
[]
Whitman T, Enders A, Lehmann J. Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants. Soil Biol Biochem, 2014, 73: 33-41, coi: 1:CAS:528:DC%2BC2cXmvVWmsL8%3D
CrossRef Google scholar
[]
Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. Sustainable biochar to mitigate global climate change. Nat Commun, 2010, 1: 56, coi: 1:CAS:528:DC%2BC3cXhtFGhs7bP
CrossRef Google scholar
[]
Woolf D, Lehmann J, Lee DR. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nat Commun, 2016, 7: 13160, coi: 1:CAS:528:DC%2BC28XhslGrtr7F
CrossRef Google scholar
[]
Yan S, Yin L, Dijkstra FA, Wang P, Cheng W. Priming effect on soil carbon decomposition by root exudate surrogates: a meta-analysis. Soil Biol Biochem, 2023, 178, coi: 1:CAS:528:DC%2BB3sXht1aksb4%3D
CrossRef Google scholar
[]
Zhang Y, Sun C, Wang S, Xie H, Jiang N, Chen Z, Wei K, Bao X, Song X, Bai Z. Stover and biochar can improve soil microbial necromass carbon, and enzymatic transformation at the genetic level. GC Bioenergy, 2022, 14(10): 1082-1096, coi: 1:CAS:528:DC%2BB38Xit1entbzL
CrossRef Google scholar
[]
Zhang A, Wang X, Fang Y, Sun X, Tavakkoli E, Li Y, Wu D, Du Z. Biochar more than stubble management affected carbon allocation and persistence in soil matrix: a 9-year temperate cropland trial. J Soil Sediment, 2023, 23: 3018-3028, coi: 1:CAS:528:DC%2BB3sXhtFansLjL
CrossRef Google scholar
[]
Zhou S, Lin J, Wang P, Zhu P, Zhu B. Resistant soil organic carbon is more vulnerable to priming by root exudate fractions than relatively active soil organic carbon. Plant Soil, 2022,
CrossRef Google scholar
[]
Zimmerman AR, Gao B, Ahn M-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem, 2011, 43: 1169-1179, coi: 1:CAS:528:DC%2BC3MXkvFagt7c%3D
CrossRef Google scholar
Funding
Helsingin Yliopisto(HY/66/05.01.07/2017); Helsinki Institute of Life Science, Helsingin Yliopisto; Academy of Finland(316401)

Accesses

Citations

Detail

Sections
Recommended

/