Induction of cellulase production by Sr2+ in Trichoderma reesei via calcium signaling transduction

Ni Li , Yi Zeng , Yumeng Chen , Yaling Shen , Wei Wang

Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 96

PDF
Bioresources and Bioprocessing ›› 2022, Vol. 9 ›› Issue (1) : 96 DOI: 10.1186/s40643-022-00587-3
Research

Induction of cellulase production by Sr2+ in Trichoderma reesei via calcium signaling transduction

Author information +
History +
PDF

Abstract

Trichoderma reesei RUT-C30 is a well-known high-yielding cellulase-producing fungal strain that converts lignocellulose into cellulosic sugar for resource regeneration. Calcium is a ubiquitous secondary messenger that regulates growth and cellulase production in T. reesei. We serendipitously found that adding Sr2+ to the medium significantly increased cellulase activity in the T. reesei RUT-C30 strain and upregulated the expression of cellulase-related genes. Further studies showed that Sr2+ supplementation increased the cytosolic calcium concentration and activated the calcium-responsive signal transduction pathway of Ca2+–calcineurin-responsive zinc finger transcription factor 1 (CRZ1). Using the plasma membrane Ca2+ channel blocker, LaCl3, we demonstrated that Sr2+ induces cellulase production via the calcium signaling pathway. Supplementation with the corresponding concentrations of Sr2+ also inhibited colony growth. Sr2+ supplementation led to an increase in intracellular reactive oxygen species (ROS) and upregulated the transcriptional levels of intracellular superoxide dismutase (sod1) and catalase (cat1). We further demonstrated that ROS content was detrimental to cellulase production, which was alleviated by the ROS scavenger N-acetyl cysteine (NAC). This study demonstrated for the first time that Sr2+ supplementation stimulates cellulase production and upregulates cellulase genes via the calcium signaling transduction pathway. Sr2+ leads to an increase in intracellular ROS, which is detrimental to cellulase production and can be alleviated by the ROS scavenger NAC. Our results provide insights into the mechanistic study of cellulase synthesis and the discovery of novel inducers of cellulase.

Keywords

Trichoderma reesei / Sr2+ / Cellulase / ROS / Calcium signaling / Signal transduction

Cite this article

Download citation ▾
Ni Li, Yi Zeng, Yumeng Chen, Yaling Shen, Wei Wang. Induction of cellulase production by Sr2+ in Trichoderma reesei via calcium signaling transduction. Bioresources and Bioprocessing, 2022, 9(1): 96 DOI:10.1186/s40643-022-00587-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antoniêto AC, de Paula RG, Castro Ldos S, Silva-Rocha R, Persinoti GF, Silva RN. Trichoderma reesei CRE1-mediated carbon catabolite repression in response to sophorose through RNA sequencing analysis. Curr Genomics, 2016, 17(2): 119-131.

[2]

Baldrian P, Valásková V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev, 2008, 32(3): 501-521.

[3]

Benčina M, Legisa M, Read ND. Cross-talk between cAMP and calcium signalling in Aspergillus niger. Mol Microbiol, 2005, 56(1): 268-281.

[4]

Bischof R, Fourtis L, Limbeck A, Gamauf C, Seiboth B, Kubicek CP. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol Biofuels, 2013, 6(1): 127.

[5]

Blaszczyk U, Duda-Chodak A. Magnesium: its role in nutrition and carcinogenesis. Rocz Panstw Zakl Hig, 2013, 64(3): 165-171.

[6]

Bootman MD, Berridge MJ, Roderick HL. Calcium signalling: more messengers, more channels, more complexity. Curr Biol, 2002, 12(16): R563-R565.

[7]

Boussac A, Rappaport F, Carrier P, Verbavatz J-M, Gobin R, Kirilovsky D, Rutherford AW, Sugiura M. Biosynthetic Ca2+/Sr2+ exchange in the photosystem II oxygen-evolving enzyme of Thermosynechococcus elongatus. J Biol Chem, 2004, 279(22): 22809-22819.

[8]

Boussac A, Rutherford AW, Sugiura M. Electron transfer pathways from the S2-states to the S3-states either after a Ca2+/Sr2+ or a Cl/I exchange in Photosystem II from Thermosynechococcus elongatus. Biochim Biophys Acta, 2015, 1847(6–7): 576-586.

[9]

Cao YL, Zheng FL, Zhang WX, Meng XF, Liu WF. Trichoderma reesei XYR1 recruits SWI/SNF to facilitate cellulase gene expression. Mol Microbiol, 2019, 112(4): 1145-1162.

[10]

Carle-Urioste JC, Escobar-Vera J, El-Gogary S, Henrique-Silva F, Torigoi E, Crivellaro O, Herrera-Estrella A, El-Dorry H. Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. J Biol Chem, 1997, 272(15): 10169-10174.

[11]

Chen L, Zou G, Wang JZ, Wang J, Liu R, Jiang YP, Zhao GP, Zhou ZH. Characterization of the Ca2+-responsive signaling pathway in regulating the expression and secretion of cellulases in Trichoderma reesei Rut-C30. Mol Microbiol, 2016, 100(3): 560-575.

[12]

Chen YM, Shen YL, Wang W, Wei DZ. Mn2+ modulates the expression of cellulase genes in Trichoderma reesei Rut-C30 via calcium signaling. Biotechnol Biofuels, 2018, 11: 54.

[13]

Chen YM, Wu C, Shen YL, Ma YS, Wei DZ, Wang W. N, N-dimethylformamide induces cellulase production in the filamentous fungus Trichoderma reesei. Biotechnol Biofuels, 2019, 12: 36.

[14]

Chen MH, Wang JJ, Lin L, Xu XY, Wei W, Shen YL, Wei DZ. Synergistic regulation of metabolism by Ca2+/reactive oxygen species in Penicillium brevicompactum improves production of mycophenolic acid and investigation of the Ca2+ channel. ACS Synth Biol, 2021, 11(1): 273-285.

[15]

Chen YM, Fan XJ, Zhao XQ, Shen YL, Xu XY, Wei LJ, Wang W, Wei DZ. cAMP activates calcium signalling via phospholipase C to regulate cellulase production in the filamentous fungus Trichoderma reesei. Biotechnol Biofuels, 2021, 14(1): 62.

[16]

Chen MH, Shen YL, Lin L, Wei W, Wei DZ. Mn2+ modulates the production of mycophenolic acid in Penicillium brevicompactum NRRL864 via reactive oxygen species signaling and the investigation of pb-pho. Fungal Biol, 2022, 126(6–7): 461-470.

[17]

de Castro PA, Chen CX, de Almeida RSC, Freitas FZ, Bertolini MC, Morais ER, Brown NA, Ramalho LNZ, Hagiwara D, Mitchell TK, Goldman GH. ChIP-seq reveals a role for CrzA in the Aspergillus fumigatus high-osmolarity glycerol response (HOG) signalling pathway. Mol Microbiol, 2014, 94(3): 655-674.

[18]

Fischer AJ, Maiyuran S, Yaver DS. Industrial relevance of Trichoderma reesei as an enzyme producer. Methods Mol Biol, 2021, 2234: 23-43.

[19]

Furukawa T, Shida Y, Kitagami N, Mori K, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y. Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol, 2009, 46(8): 564-574.

[20]

Gao T, Shi L, Zhang TJ, Ren A, Jiang AL, Yu HS, Zhao MW. Cross talk between calcium and reactive oxygen species regulates hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum under copper stress. Appl Environ Microbiol, 2018, 84(13): e00438-18.

[21]

Groisman EA, Hollands K, Kriner MA, Lee E-J, Park S-Y, Pontes MH. Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet, 2013, 47: 625-646.

[22]

Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM. Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels, 2014, 7(1): 14.

[23]

Li CC, Lin FM, Li YZ, Wei W, Wang HY, Qin L, Zhou ZH, Li BZ, Wu FG, Chen Z. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microb Cell Fact, 2016, 15(1): 151.

[24]

Li JG, Zhang SK, Li HL, Ouyang XH, Huang LL, Ni YH, Chen LH. Cellulase pretreatment for enhancing cold caustic extraction-based separation of hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol, 2018, 251: 1-6.

[25]

Li YQ, Zhang YW, Zhang C, Wang HC, Wei XL, Chen PY, Lu L. Mitochondrial dysfunctions trigger the calcium signaling-dependent fungal multidrug resistance. Proc Natl Acad Sci USA, 2019, 117(3): 1711-1721.

[26]

Li YH, Yu JZ, Zhang P, Long TT, Mo Y, Li JH, Li Q. Comparative transcriptome analysis of Trichoderma reesei reveals different gene regulatory networks induced by synthetic mixtures of glucose and β-disaccharide. Bioresour Bioprocess, 2021, 8: 57.

[27]

Liu R, Cao PF, Ren A, Wang SL, Yang T, Zhu T, Shi L, Zhu J, Jiang AL, Zhao MW. SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum. Redox Biol, 2018, 16: 388-400.

[28]

Liu P, Zhang GX, Chen YM, Zhao J, Wang W, Wei DZ. Enhanced cellulase production by decreasing intercellular pH through H+-ATPase gene deletion in Trichoderma reesei RUT-C30. Biotechnol Biofuels, 2019, 12: 195.

[29]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods, 2001, 25(4): 402-408.

[30]

Luo Y, Valkonen M, Jackson RE, Palmer JM, Bhalla A, Nikolaev I, Saloheimo M, Ward M. Modification of transcriptional factor ACE3 enhances protein production in Trichoderma reesei in the absence of cellulase gene inducer. Biotechnol Biofuels, 2020, 13: 137.

[31]

Malagnac F, Lalucque H, Lepère G, Silar P. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet Biol, 2004, 41(11): 982-997.

[32]

Martins-Santana L, de Paula RG, Silva AG, Lopes DCB, Silva RdN, Silva-Rocha R. CRZ1 regulator and calcium cooperatively modulate holocellulases gene expression in Trichoderma reesei QM6a. Genet Mol Biol, 2020, 43(2): e20190244.

[33]

Martzy R, Mello-de-Sousa TM, Mach RL, Yaver D, Mach-Aigner AR. The phenomenon of degeneration of industrial Trichoderma reesei strains. Biotechnol Biofuels, 2021, 14(1): 193.

[34]

Mendoza-Martínez AE, Lara-Rojas F, Sánchez O, Aguirre J. NapA mediates a redox regulation of the antioxidant response, carbon utilization and development in Aspergillus nidulans. Front Microbiol, 2017, 8: 516.

[35]

Ren A, Liu R, Miao ZG, Zhang X, Cao PF, Chen TX, Li CY, Shi L, Jiang AL, Zhao MW. Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum. Environ Microbiol, 2017, 19(2): 566-583.

[36]

Roy A, Kumar A, Baruah D, Tamuli R. Calcium signaling is involved in diverse cellular processes in fungi. Mycology, 2021, 12(1): 10-24.

[37]

Schmoll M. Assessing the relevance of light for fungi: implications and insights into the network of signal transmission. Adv Appl Microbiol, 2011, 76: 27-78.

[38]

Somerville C, Youngs H, Taylor C, Davis SC, Long SP. Feedstocks for lignocellulosic biofuels. Science, 2010, 329(5993): 790-792.

[39]

Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell, 2006, 5(12): 2128-2137.

[40]

Takemoto D, Tanaka A, Scott B. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol, 2007, 44(11): 1065-1076.

[41]

Xin Q, Xu JT, Wang TH, Liu WF, Chen GJ. Transcriptional regulation of cellulases and hemicellulases gene in Hypocrea jecorina—a review. Wei Sheng Wu Xue Bao, 2010, 50(11): 1431-1437.

[42]

Yan S, Xu Y, Yu XW. From induction to secretion: a complicated route for cellulase production in Trichoderma reesei. Bioresour Bioprocess, 2021, 8: 107.

[43]

Zeilinger S, Mach RL, Schindler M, Herzog P, Kubicek CP. Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei. J Biol Chem, 1996, 271(41): 25624-25629.

[44]

Zhang GX, Liu P, Wei W, Wang XD, Wei DZ, Wang W. A light-switchable bidirectional expression system in filamentous fungus Trichoderma reesei. J Biotechnol, 2016, 240: 85-93.

[45]

Zhang JJ, Wu C, Wang W, Wang W, Wei DZ. Construction of enhanced transcriptional activators for improving cellulase production in Trichoderma reesei RUT C30. Bioresour Bioprocess, 2018, 5: 40.

[46]

Zhang JJ, Chen YM, Wu C, Liu P, Wang W, Wei DZ. The transcription factor ACE3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei. J Biol Chem, 2019, 294(48): 18435-18450.

[47]

Zhang XH, Ma C, Zhang L, Su M, Wang J, Zheng S, Zhang TG. GR24-mediated enhancement of salt tolerance and roles of H2O2 and Ca2+ in regulating this enhancement in cucumber. J Plant Physiol, 2022, 270: 153640.

Funding

Shanghai Agriculture Applied Technology Development Program, China(2021-02-08-00-12-F00758)

Natural Science Foundation of Shanghai(22ZR1417600)

National Natural Science Foundation of China(32000050)

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/