Production of HMF-derivatives from wine residues using Saccharomyces cerevisiae as whole-cell biocatalyst

Joana T. Cunha, Aloia Romaní, Lucília Domingues

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 0.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 0. DOI: 10.1186/s40643-025-00840-5
Short Report

Production of HMF-derivatives from wine residues using Saccharomyces cerevisiae as whole-cell biocatalyst

Author information +
History +

Abstract

Background

There is an urgent need to develop bioprocesses independent of fossil resources to address resource depletion and mitigate environmental harm. Transitioning to a bio-based economy requires prioritizing chemical production processes that utilize renewable resources, ensuring sustainability and environmental responsibility. 5-Hydroxymethylfurfural (HMF) and its derivatives are promising building blocks, ranked among the top 12 bio-based molecules derived from biomass. This study investigates the potential of wine residues as substrates for HMF production and explores the yeast Saccharomyces cerevisiae, a robust industrial microbial cell factory, as a whole-cell biocatalyst for converting HMF into high-value compounds, offering an alternative to chemical synthesis.

Findings

Several S. cerevisiae strains were compared for their ability to convert HMF, demonstrating varying capacities for oxidation or reduction. For the first time, HMF derivatives with potential industrial applications were produced using an HMF-rich hydrolysate obtained from sustainable processing of wine-growing waste, such as grape pomace and must surplus. The selected yeast strain was engineered to express the oxidoreductase enzyme of HMF/Furfural from Cupriavidua basilensis strain HMF14, resulting in a 15-fold increase in the accumulation of oxidized derivatives such as 2,5-furandicarboxylic acid (FDCA).

Conclusions

These findings highlight the potential of leveraging wine residues and engineered S. cerevisiae strains to develop sustainable bioprocesses for producing valuable HMF derivatives, thereby contributing to the advancement of bio-based chemical production.

Graphical Abstract

Cite this article

Download citation ▾
Joana T. Cunha, Aloia Romaní, Lucília Domingues. Production of HMF-derivatives from wine residues using Saccharomyces cerevisiae as whole-cell biocatalyst. Bioresources and Bioprocessing, 2025, 12(1): 0 https://doi.org/10.1186/s40643-025-00840-5

References

Baptista M, Cunha JT, Domingues L. Establishment of Kluyveromyces marxianus as a microbial cell factory for lignocellulosic processes: production of high value furan derivatives. J Fungi, 2021, 7(12): 1047.
CrossRef Google scholar
Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L (2021b) Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 47(107697). https://doi.org/10.1016/j.biotechadv.2022.108027
Baptista SL, Romaní A, Cunha JT, Domingues L (2023) Multi-feedstock biorefinery concept: valorization of winery wastes by engineered yeast. J Environ Manage, 326, Part A(116623).
Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res, 2008, 8(7): 1155-1163.
CrossRef Pubmed Google scholar
Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s top 10 revisited. Green Chem, 2010, 12(4): 539-554.
CrossRef Google scholar
Chen DC, Yang BC, Kuo TT. One-step transformation of yeast in stationary phase. Curr Genet, 1992, 21(1): 83-84.
CrossRef Pubmed Google scholar
Costa CE, Romaní A, Cunha JT, Johansson B, Domingues L. Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: importance of yeast chassis linked to process conditions. Bioresource Technol, 2017, 227: 24-34.
CrossRef Google scholar
Cunha JT, Romaní A, Costa CE, Sá-Correia I, Domingues L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol, 2019, 103(1): 159-175.
CrossRef Pubmed Google scholar
Cunha JT, Romaní A, Inokuma K, Johansson B, Hasunuma T, Kondo A, Domingues L. Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts. Biotechnol Biofuel, 2020, 13(1): 138.
CrossRef Google scholar
Cunha JT, Soares PO, Baptista SL, Costa CE, Domingues L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered, 2020, 11(1): 883-903. 8291843
CrossRef Pubmed Google scholar
Cunha JT, Romaní A, Domingues L. Whole cell biocatalysis of 5-hydroxymethylfurfural for sustainable biorefineries. Catalysts, 2022, 12(2): 202.
CrossRef Google scholar
De Bont JAMW (2018) (NL), Ruijssenaars Harald Johan (Doorn, NL), Werij Jan (Gorssel, NL). Fungal production of FDCA, (Ed.) N. Purac Biochem B.V. Gorinchem. United States
Dijkman WP, Fraaije MW. Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Appl Environ Microbiol, 2014, 80(3): 1082-1090. 3911204
CrossRef Pubmed Google scholar
Hijosa-Valsero M, Garita-Cambronero J, Paniagua-García AI, Díez-Antolínez R. Mannitol bioproduction from surplus grape musts and wine less. LWT, 2021, 151: 112083.
CrossRef Google scholar
Hu L, He A, Liu X, Xia J, Xu J, Zhou S, Xu J. Biocatalytic transformation of 5-hydroxymethylfurfural into high-value derivatives: recent advances and future aspects. ACS Sustain Chem Eng, 2018, 6(12): 15915-15935.
CrossRef Google scholar
Ishii J, Yoshimura K, Hasunuma T, Kondo A (2013) Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR–XDH pathway. 97(6):2597–2607
Jesus M, Romaní A, Mata F, Domingues L. Current options in the valorisation of vine pruning residue for the production of biofuels, biopolymers, antioxidants, and bio-composites following the concept of biorefinery: a review. Polymers, 2022, 14(9): 1640. 9101343
CrossRef Pubmed Google scholar
Kalli E, Lappa I, Bouchagier P, Tarantilis P, Skotti E (2018) Novel application and industrial exploitation of winery by-products Bioresources Bioprocess, 5,1, art n 46.
Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid. Bioresource Technol, 2010, 101(16): 6291-6296.
CrossRef Google scholar
Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci USA, 2010, 107(11): 4919-4924. 2841868
CrossRef Pubmed Google scholar
Lewis Liu Z, Moon J, Andersh BJ, Slininger PJ, Weber S. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2008, 81(4): 743-753.
CrossRef Pubmed Google scholar
Li Y-M, Zhang X-Y, Li N, Xu P, Lou W-Y, Zong M-H. Biocatalytic reduction of HMF to 2,5-bis(hydroxymethyl)furan by HMF-tolerant whole cells. Chemsuschem, 2017, 10(2): 372-378.
CrossRef Pubmed Google scholar
Lia X-P, Qian W, Zong M-H, Li N (2024) A straightforward chemobiocatalystic route for one-pot valorization of glucose into 2,5-bis(hydroxymethyl)furan. Bioresources an Bioporcessing, 11, 1 art n 38-. https://doi.org/10.1186/s40643-024-00758-4
Lin B, Tao Y. Whole-cell biocatalysts by design. Microb Cell Fact, 2017, 16(1): 106. 5470193
CrossRef Pubmed Google scholar
Lip KYF, García-Ríos E, Costa CE, Guillamón JM, Domingues L, Teixeira JA, van Gulik WM. Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at sub- and- supra optimal temperatures. Biotechnol Rep, 2020, 26: e00462.
CrossRef Google scholar
Liu ZL. Reasons for 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde resistance in Saccharomyces cerevisiae: current state of knowledge and perspectives for further improvements. Appl Microbiol Biotechnol, 2021, 105(8): 2991-3007.
CrossRef Pubmed Google scholar
Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Lidén G. Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol, 2005, 71(12): 7866-7871. 1317483
CrossRef Pubmed Google scholar
Park S-E, Koo HM, Park YK, Park SM, Park JC, Lee O-K, Park Y-C, Seo J-H. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresource Technol, 2011, 102(10): 6033-6038.
CrossRef Google scholar
Pereira FB, Guimarães PMR, Teixeira JA, Domingues L. Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes. Biotechnol Lett, 2010, 32: 1655-1661.
CrossRef Pubmed Google scholar
Pereira FB, Romaní A, Ruiz HA, Teixeira JA, Domingues L. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresource Technol, 2014, 161: 192-199.
CrossRef Google scholar
Pérez-Pérez A, Gullón B, Lobato-Rodríguez A, Garrote G, del Río GP. Microwave-assisted extraction of hemicellulosic oligosaccharides and phenolic from Robine Pseudoacacia wood. Carbohydr Polym, 2023, 301: 120364.
CrossRef Pubmed Google scholar
Pinheiro T, Lip KYF, García-Ríos E, Querol A, Teixeira J, van Gulik W, Guillamón JM, Domingues L. Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Sci Rep, 2020, 10(1): 22329. 7749138
CrossRef Pubmed Google scholar
Prasad S, Al Jaradah K, Vivek N, Vinod K, Suman D, Ejaz A. Recent advances in the production of 2,5-furandicarboxylic acid from biorenewable resources. Mat Sci Energy Technol, 2023, 6: 502-521
Rajesh RO, Godan TK, Sindhu R, Pandey A, Binod P. Bioengineering advancements, innovations and challenges on green synthesis of 2, 5-furan dicarboxylic acid. Bioengineered, 2020, 11(1): 19-38.
CrossRef Pubmed Google scholar
Romaní A, Tomaz PD, Garrote G, Teixeira JA, Domingues L. Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Bioresource Technol, 2016, 220: 323-332.
CrossRef Google scholar
Saikia K, Rathankumar AK, Kumar PS, Varjani S, Nizar M, Lenin R, George J, Vaidyanathan VK. Recent advances in biotransformation of 5-Hydroxymethylfurfural: challenges and future aspects. J Chem Technol Biotechnol, 2021, 97: 409-419.
CrossRef Google scholar
Sárvári Horváth I, Franzén CJ, Taherzadeh MJ, Niklasson C, Lidén G. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol, 2003, 69(7): 4076-4086. 165176
CrossRef Pubmed Google scholar
Schwan RF, Mendonca AT, da Silva JJ, Rodrigues V, Wheals AE. Microbiology and physiology of Cachaca (Aguardente) fermentations. Antonie Van Leeuwenhoek, 2001, 79(1): 89-96.
CrossRef Pubmed Google scholar
Secches T, Santos Viera CF, Pereira TKE, Santos VTO, Ribeirodos Santos J, Pereira GAG, Carazzolle MF (2022) Brazilian industrial yeasts show high fermentative performance in high solids content for corn ethanol process. Bioresources and Bioprocessing, 9, 1. art n 97. DOI 0.1186/s40643-022-00580-w
Sheng Y, Tan X, Zhou X, Xu Y. Bioconversion of 5-Hydroxymethylfurfural (HMF) to 2,5 Furandicarboxylic Acid (FDCA) by a native Obligate Aerobic Bacterium, Acinetobacter calcoaceticus NL14. Appl Biochem Biotechnol, 2020, 192(2): 455-465.
CrossRef Pubmed Google scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory
Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng, 1999, 87(2): 169-174.
CrossRef Pubmed Google scholar
Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2000, 53(6): 701-708.
CrossRef Pubmed Google scholar
Xia Z-H, Zong M-H, Li N. Catalytic synthesis of 2,5-bis(hydroxymethyl)furan from 5-hydroxymethylfurfual by recombinant Saccharomyces cerevisiae. Enzyme Microb Technol, 2020, 134: 109491.
CrossRef Pubmed Google scholar
Xu Q, Zheng Z, Zou L, Zhang C, Yang F, Zhou K, Ouyang J. A versatile Pseudomonas putida KT2440 with new ability: selective oxidation of 5-hydroxymethylfurfural to 5 hydroxymethyl-2-furancarboxylic acid. Bioprocess Biosyst Eng, 2020, 43(1): 67-73.
CrossRef Pubmed Google scholar
Yuan H, Li J, Shin HD, Du G, Chen J, Shi Z, Liu L. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60. Bioresource Technol, 2018, 247: 1184-1188.
CrossRef Google scholar
Funding
Funda??o para a Ciência e a Tecnologia(10.54499/UIDB/04469/2020); Ministerio de Ciencia e Innovación(RYC2020-030690-I)

19

Accesses

0

Citations

1

Altmetric

Detail

Sections
Recommended

/