Review on mushroom mycelium-based products and their production process: from upstream to downstream

Hyun-Jae Shin, Hyeon-Su Ro, Moriyuki Kawauchi, Yoichi Honda

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 3.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 3. DOI: 10.1186/s40643-024-00836-7
Review

Review on mushroom mycelium-based products and their production process: from upstream to downstream

Author information +
History +

Abstract

Abstract

The global trend toward carbon neutrality and sustainability calls for collaborative efforts in both the basic and applied research sectors to utilize mushroom mycelia as environmentally friendly and sustainable materials. Fungi, along with animals and plants, are one of the major eukaryotic life forms. They have long been utilized in traditional biotechnology sectors, such as food fermentation, antibiotic production, and industrial enzyme production. Some fungi have also been consumed as major food crops, such as the fruiting bodies of various mushrooms. Recently, new trends have emerged, shifting from traditional applications towards the innovative use of mushroom mycelium as eco-friendly bioresources. This approach has gained attention in the development of alternative meats, mycofabrication of biocomposites, and production of mycelial leather and fabrics. These applications aim to replace animal husbandry and recycle agricultural waste for use in construction and electrical materials. This paper reviews current research trends on industrial applications of mushroom mycelia, covering strain improvements and molecular breeding as well as mycelial products and the production processes. Key findings, practical considerations, and valorization are also discussed.

Graphical Abstract

Cite this article

Download citation ▾
Hyun-Jae Shin, Hyeon-Su Ro, Moriyuki Kawauchi, Yoichi Honda. Review on mushroom mycelium-based products and their production process: from upstream to downstream. Bioresources and Bioprocessing, 2025, 12(1): 3 https://doi.org/10.1186/s40643-024-00836-7

References

Abhijith R, Ashok A, Rejeesh CR. Sustainable packaging applications from mycelium to substitute polystyrene: a review Mater Today Proc, 2018, 5: 2139-2145.
CrossRef Google scholar
Adamatzky A, Gandia A. On electrical spiking of Ganoderma resinaceum Biophys Rev Lett, 2021, 16: 133-141.
CrossRef Google scholar
Adamatzky A, Gandia A. Living mycelium composites discern weights via patterns of electrical activity J Bioresour Bioprod, 2022, 7: 26-32.
CrossRef Google scholar
Adamatzky A, Nikolaidou A, Gandia A, Chiolerio A, Dehshib MM. Reactive fungal wearable Biosystems, 2021, 199. 104304
CrossRef Google scholar
Aiduang W, Jatuwong K, Luangharn T, Jinanukul P, Thamjaree W, Teeraphantuvat T, Waroonkun T, Lumyong S. A review delving into the factors influencing mycelium-based green composites (MBCs) production and their properties for long-term sustainability targets Biomimetics, 2024, 9: 337.
CrossRef Google scholar
Akpasi SO, Anekwe IMS, Tetteh EK, Amune UO, Shoyiga HO, Mahlangu TP, Kiambi SL. Mycoremediation as a potentially promising technology: current status and prospects—a review Appl Sci, 2023, 13: 4978.
CrossRef Google scholar
Akromah S, Chandarana N, Rowlandson JL, Eichhorn SJ. Potential environmental impact of mycelium composites on African communities Sci Rep, 2024, 14: 11867.
CrossRef Google scholar
Alaneme KK, Anaele JU, Oke TM, Kareem SA, Adediran M, Ajibuwa OA, Anabaranze YO. Mycelium based composites: a review of their bio-fabrication procedures, material properties and potential for green building and construction applications Alex Eng J, 2023, 83: 234-250.
CrossRef Google scholar
Alaux N, Vašatko H, Maierhofer D, Saade MRM, Stavric M, Passer A. Environmental potential of fungal insulation: a prospective life cycle assessment of mycelium-based composites Int J Life Cycle Assess, 2024, 29: 255-272.
CrossRef Google scholar
Alemu D, Tafesse M, Mondal AK. Mycelium-based composite: the future sustainable biomaterial Int J Biomater, 2022, 12: 8401528.
CrossRef Google scholar
Amara AA, El-Baky NA. Fungi as a source of edible proteins and animal feed J Fungi, 2023, 9: 73.
CrossRef Google scholar
Amobonye A, Lalung J, Awasthi MK, Pillai S. Fungal mycelium as leather alternative: a sustainable biogenic material for the fashion industry Sustain Mater Technol, 2023, 38. e00724
CrossRef Google scholar
Ángeles-Argáiz R, Carmona-Reyes IA, Quintero-Corrales C, Medina-Macías FJ, Blancas-Cabrera A, Valdez-Cruz NA, Ulloa M, Trujillo-Roldán MA, Garibay-Orijel R. From field sampling to pneumatic bioreactor mycelia production of the ectomycorrhizal mushroom Laccaria trichodermophora Fungal Biol, 2020, 124: 205-218.
CrossRef Google scholar
Antinori ME, Ceseracciu L, Mancini G, Heredia-Guerrero JA, Athanassiou A. Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials ACS Appl Bio Mater, 2020, 3: 1044-1051.
CrossRef Google scholar
Appels FVW, Camere S, Montalti M, Karana E, Jansen KMB, Dijksterhuis J, Krijgsheld P, Wosten HAB. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites Mater des, 2019, 161: 64-71.
CrossRef Google scholar
Appels FVW, van den Brandhof JG, Dijksterhuis J, de Kort GW, Wosten HAB. Fungal mycelium classified in different material families based on glycerol treatment Commun Biol, 2020, 3: 334.
CrossRef Google scholar
Arantes V, Goodell B Schultz P. Current understanding of brown-rot fungal biodegradation mechanisms a review Deterioration and protection of sustainable biomaterials ACS Symposium Series, 2014 Washington American Chemical Society
Ariyani NR, Wijayanti SP, Putra NG, Kusumawati MB, Setiawan AAR, Isharyadi F, Widyastuti N, Djarot IN, Handayani T. Mycelium-based leather potential for sustainability: a review AIP Conf Proc, 2024, 3001. 030012
CrossRef Google scholar
Awogbemi O, Von Kallon DV. Pretreatment techniques for agricultural waste Case Studies Chem Environ Eng, 2022, 6. 100229
CrossRef Google scholar
Bae B, Kim M, Kim S, Ro HS. Growth characteristics of polyporales mushrooms for the mycelial mat formation Mycobiol, 2021, 49: 280-284.
CrossRef Google scholar
Balaeș T, Radu BM, Tanase C. Mycelium-composite materials—a promising alternative to plastics? J Fungi (Basel), 2023, 9: 210.
CrossRef Google scholar
Bearne S (2023) The mushroom you can wear and build with. https://www.bbc.com/news/business-64810935. Accessed 10 Oct 2024.
Beauvais A, Bruneau JM, Mol PC, Buitrago MJ, Legrand R, Latgé JP. Glucan synthase complex of Aspergillus fumigatus J Bacteriol, 2001, 183: 2273-2279.
CrossRef Google scholar
Bhagarathi LK, Subramanian G, DaSilva PNB. A review of mushroom cultivation and production, benefits and therapeutic potentials World J Biol Pharm Health Sci, 2023, 15: 001-056.
CrossRef Google scholar
Boontawon T, Nakazawa T, Inoue C, Osakabe K, Kawauchi M, Sakamoto M, Honda Y. Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus AMB Express, 2021, 11: 30.
CrossRef Google scholar
Boontawon T, Nakazawa T, Horii M, Tsuzuki M, Kawauchi M, Sakamoto M, Honda Y. Functional analysis of Pleurotus ostreatus pcc1 and clp1 using CRISPR/Cas9 Fungal Genet Biol, 2021, 154. 103599
CrossRef Google scholar
Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall BioEssays, 2006, 28: 799-808.
CrossRef Google scholar
Bustillos J, Loganathan A, Agrawal R, Gonzalez BA, Perez MG, Ramaswamy S, Boesl B, Agarwal A. Uncovering the mechanical, thermal, and chemical characteristics of biodegradable mushroom leather with intrinsic antifungal and antibacterial properties ACS Appl Bio Mater, 2020, 3: 3145-3156.
CrossRef Google scholar
Campbell B, Ionescu R, Favors Z, Ozkan CS, Ozkan M. Bio-derived, binderless, hierarchically porous carbon anodes for Li-ion batteries Sci Rep, 2015, 5: 14575.
CrossRef Google scholar
Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P. Fungi as source for new bio-based materials: a patent review Fungal Biol Biotechnol, 2019, 6: 1-10.
CrossRef Google scholar
Chan XY, Saeidi N, Javadian A, Hebel DE, Gupta M. Mechanical properties of dense mycelium-bound composites under accelerated tropical weathering conditions Sci Rep, 2021, 11: 22112.
CrossRef Google scholar
Chan E, Webb B (2023) Stella McCartney-backed leather alternative Mylo halts production. https://www.voguebusiness.com/sustainability/stella-mccartney-backed-leather-alternative-mylo-halts-production-bolt-threads-kering-ganni-adidas-lululemon. Accessed 10 Oct 2024
Choi YJ, Eom H, Yang SH, Nandre R, Kim S, Kim M, Oh YL, Nakazawa T, Honda Y, Ro HS. Heterokaryosis, the main obstacle in the generation of PPO1-edited Agaricus bisporus by CRISPR/Cas9 system Sci Hortic, 2023, 318. 112095
CrossRef Google scholar
Coelho J, Correia R, Silvestre S, Pinheiro T, Marques AC, Correia MR, Pinto JV, Fortunato E, Martins R. Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications Microchim Acta, 2023, 190: 40.
CrossRef Google scholar
Covington AD, Wise WR. Current trends in leather science J Leather Sci Eng, 2020, 2: 28.
CrossRef Google scholar
Crawford A, Miller SR, Branco S, Fletcher J, Stefanov D. Growing mycelium-leather: a paste substrate approach with post-treatments Res Dir, 2024, 2: e6.
CrossRef Google scholar
Cui T, Yuan B, Guo H, Tian H, Wang W, Ma Y, Li C, Fei Q. Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping Biotechnol Biofuels, 2021, 14: 162.
CrossRef Google scholar
Danninger D, Pruckner R, Holzinger L, Koeppe R, Kaltenbrunner M. MycelioTronics: fungal mycelium skin for sustainable electronics Sci Adv, 2022.
CrossRef Google scholar
De Beeck MO, Persson P, Tunlid A. Fungal extracellular polymeric substance matrices–highly specialized microenvironments that allow fungi to control soil organic matter decomposition reactions Soil Biol Biochem, 2021, 159. 108304
CrossRef Google scholar
De Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG. Agrobacterium tumefaciens-mediated transformation of filamentous fungi Nat Biotechnol, 1998, 16: 839-842.
CrossRef Google scholar
Dehshibi MM, Adamatzky A. Electrical activity of fungi: Spikes detection and complexity analysis Biosyst, 2021, 203. 104373
CrossRef Google scholar
Dessi-Olive J. Strategies for growing large-scale mycelium structures Biomimetics, 2022.
CrossRef Google scholar
Dichtl K, Samantaray S, Wagener J. Cell wall integrity signalling in human pathogenic fungi Cell Microbiol, 2016, 18: 1228-1238.
CrossRef Google scholar
Docimo DJ, Ghanaatpishe M, Rothenberger MJ, Rahn CD, Fathy HI. The lithium-ion battery modeling challenge ASM Int, 2014, 136: S7-S14.
CrossRef Google scholar
Dong Y, Miao R, Feng R, Wang T, Yan J, Zhao X, Han X, Gan Y, Lin J, Li Y, Gan B, Zhao J. Edible and medicinal fungi breeding techniques, a review: current status and future prospects Curr Res Food Sci, 2022, 17: 2070-2080.
CrossRef Google scholar
Eastwood DC Schultz TP, Goodell D, Nicholas DD. Evolution of fungal wood decay Deterioration and protection of sustainable biomass, 2014 Washington DC American Chemical Society
Ehren HL, Appels FVW, Houben K, Renault MAM, Wösten HAB, Baldus M. Characterization of the cell wall of a mushroom forming fungus at atomic resolution using solid-state NMR spectroscopy Cell Surf, 2020.
CrossRef Google scholar
Elsacker E, Vandelook S, Peeters E. Recent technological innovations in mycelium materials as leather substitutes: a patent review Front Bioeng Biotechnol, 2023, 11: 1204861.
CrossRef Google scholar
Enarevba DR, Haapala KR. A comparative life cycle assessment of expanded polystyrene and mycelium packaging box inserts Procedia CIRP, 2023, 116: 654-659.
CrossRef Google scholar
Fang Y, Tyler BM. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9 Mol Plant Pathol, 2016, 17: 127-139.
CrossRef Google scholar
Feofilova EP. The fungal cell wall: modern concepts of its composition and biological function Microbiology, 2010, 79: 711-720.
CrossRef Google scholar
Ferrand HL. Critical review of mycelium-bound product development to identify barriers to entry and paths to overcome them J Clean Prod, 2024, 450. 141859
CrossRef Google scholar
Floudas D, Binder M, Riley R, et al.. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes Science, 2012, 336: 1715-1719.
CrossRef Google scholar
Fukasawa Y, Hamano K, Kaga K, Akai D, Takehi T. Spatial resource arrangement influences both network structures and activity of fungal mycelia: a form of pattern recognition? Fungal Ecol, 2024, 72. 101387
CrossRef Google scholar
Gandia A, Montalti M, Babbini S (2022) Method of producing fungal mats and materials made therefrom. U.S. Patent Application US-10687482B2.
Gou L, Li S, Yin J, Li T, Liu X. Morphological and physico-mechanical properties of mycelium biocomposites with natural reinforcement particles Constr Build Mater, 2021, 304. 124656
CrossRef Google scholar
Gow NAR, Lenardon MD. Architecture of the dynamic fungal cell wall Nat Rev Microbiol, 2023, 21: 248-259.
CrossRef Google scholar
Gow NAR, Latge JP, Munro CA. The fungal cell wall: Structure, biosynthesis, and function Microbiol Spectr, 2017, 5: 1-25.
CrossRef Google scholar
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg G, Dubchak I, Shabalov I. MycoCosm portal: gearing up for 1000 fungal genomes Nucleic Acids Res, 2014, 42: D699-D704.
CrossRef Google scholar
Gu R, Daihan F, Yuhong J, Mengqiu J, Nie K. Aspergillus niger fermentation residues application to produce biochar for the anode of lithium-ion batteries J Environ Manage, 2023.
CrossRef Google scholar
Han Q, Shi M, Han Z, Li Y, Zhang W, Zhang X. Bio-mesopores structure functional composites by mushroom-derived carbon/NiO for lithium-ion batteries J Alloys Compd, 2020, 848. 156477
CrossRef Google scholar
Haneef M, Ceseracciu L, Canale C, Bayer IS, Heredia-Guerrero JA, Athanassiou A. Advanced materials from fungal mycelium: fabrication and tuning of physical properties Sci Rep, 2017, 7: 41292.
CrossRef Google scholar
Harfi T, Alireza MA, Farzad R, Fariborz ZN. Induced mutation in Agaricus bisporus by gamma ray to improve genetic variability, degradation enzyme activity, and yield Int J Radiat Biol, 2021, 97: 1020-1031.
CrossRef Google scholar
Hawksworth D. Coal measure formation and lignin-degrading fungi IMA Fungus, 2012, 3: 55-58.
CrossRef Google scholar
Holt GA, Mcintyre G, Flagg D, Bayer E, Wanjura JD, Pelletier MG. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts JBMB, 2012, 6: 431-439.
CrossRef Google scholar
Holt RR, Munafo JP Jr, Salmen J, Keen CL, Mistry BS, Whiteley JM, Schmitz HH. Mycelium: A nutrient-dense food to help address world hunger, promote health, and support regenerative food system J Agric Food Chem, 2024, 72: 2697-2707.
CrossRef Google scholar
Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M. Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus Curr Genet, 2000, 37: 209-212.
CrossRef Google scholar
Hotz EC, Bradshaw AJ, Elliott C, Carlson K, Dentinger BTM, Naleway SE. Effect of agar concentration on structure and physiology of fungal hyphal systems J Mat Res Technol, 2023, 24: 7614-7623.
CrossRef Google scholar
Hu X, Yang P, Chai C, Liu J, Sun H, Wu Y, Zhang M, Zhang M, Liu X, Yu H. Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1 Nature, 2023, 616: 190-198.
CrossRef Google scholar
Hu C (2023) Inside the lab that’s growing mushroom computer. https://www.popsci.com/technology/unconventional-computing-lab-mushroom. Accessed 10 Oct 2024
Islam MR, Tudryn G, Bucinell R, Schadler L, Picu RC. Morphology and mechanics of fungal mycelium Sci Rep, 2017, 7: 13070.
CrossRef Google scholar
James T, Kauff F, Schoch C, et al.. Reconstructing the early evolution of Fungi using a six-gene phylogeny Nature, 2006, 443: 818-822.
CrossRef Google scholar
Jan Vonk P, Escobar N, Wösten HAB, Lugones LG, Ohm RA. High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using pre-assembled Cas9 ribonucleoproteins Sci Rep, 2019, 9: 7632.
CrossRef Google scholar
Jeong YH, Kim DS, Shin HJ. Trametes orientalis mycelium mat, can be used as an alternative to elastomers? Biotechnol Bioproc Eng, 2023, 28: 602-611.
CrossRef Google scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 2012, 337: 816-821.
CrossRef Google scholar
Jo C, Zhang J, Tam JM, Church GM, Khalil AS, Segrè D, Tang TC. Unlocking the magic in mycelium: using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability Mater Today Bio, 2023, 19. 100560
CrossRef Google scholar
Jones M, Mautner A, Luenco S, Bismarck A, John S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review Mater des, 2020, 187. 108397
CrossRef Google scholar
Jones M, Gandia A, John S, Bismarck A. Leather-like material biofabrication using fungi Nat Sustain, 2021, 4: 9-16.
CrossRef Google scholar
Jones MP, Jiang Q, Mautner A, Naghilou A, Prado-Roller A, Wolff M, Koch T, Archodoulaki VM, Bismarck A. Fungal carbon: a cost-effective tunable network template for creating supercapacitors Global Chall, 2024, 8: 2300315.
CrossRef Google scholar
Joshi K, Meher MK, Poluri KM. Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications ACS Appl Bio Mater, 2020, 3: 1884-1892.
CrossRef Google scholar
Kamiya A, Ueshima H, Nishida S, Honda Y, Kamitsuji H, Sato T, Miyamoto H, Sumita T, Izumitsu K, Irie T. Development of a gene-targeting system using CRISPR/Cas9 and utilization of pyrG as a novel selectable marker in Lentinula edodes FEMS Microbiol Lett, 2023, 370: 1-6.
CrossRef Google scholar
Kim JB, Yu DW. Genetic variation in mutants induced by gamma ray in Hypsizigus marmoreus J Life Sci, 2014, 24: 1174-1179.
CrossRef Google scholar
Kim S, Ha BS, Ro HS. Current technologies and related issues for mushroom transformation Mycobiol, 2015, 43: 1-8.
CrossRef Google scholar
Kim DS, Kim YW, Kim KJ, Shin HJ. Research trend and product development potential of fungal mycelium-based composite materials KSBB J, 2017, 32: 174-178.
CrossRef Google scholar
Kim HS, Oh CJ, Jeong KJ, Choi MH, Shin HJ, Oh DS. Culture and mycelim-mat formation characteristics of mutant strains by gamma-ray treatment J Mushrooms, 2020, 18: 393-397.
CrossRef Google scholar
Kniep J, Graupner N, Reimer JJ, Müssig J. Mycelium-based biomimetic composite structures as a sustainable leather alternative Mater Today Commun, 2024, 39. 109100
CrossRef Google scholar
Kok Kee W, Hock OG, Yee SLS, Er LK. Application of fungi as meat alternatives in industry: mini review J Exp Biol Agric Sci., 2022, 10: 728-736.
CrossRef Google scholar
Koshi D, Ueshima H, Kawauchi M, Nakazawa T, Sakamoto M, Hirata M, Izumitsu K, Sumita T, Irie T, Honda Y. Marker-free genome editing in the edible mushroom, Pleurotus ostreatus, using transient expression of genes required for CRISPR/Cas9 and for selection J Wood Sci, 2022, 68: 27.
CrossRef Google scholar
Krah FS, Bässler C, Heibl C, Soghigian J, Schaefer H, Hibbett DS. Evolutionary dynamics of host specialization in wood-decay fungi BMC Evol Biol, 2018, 18: 119.
CrossRef Google scholar
Kumar B, Kumari C, Kumar M. Effect of bio-fertilizers on mycelial growth and physical properties of white button mushroom [Agaricus bisporus (Lange) Imbach] Int J Curr Microbiol Sci, 2018, 7: 2216-2222.
CrossRef Google scholar
Lakhanpal TN. Bioremediation technology for environmental protection through bioconversion of agro-industrial wastes Prog Ind Microbiol, 2002, 36: 101-128.
CrossRef Google scholar
Latgé JP, Calderone R Kües U, Fischer R. The fungal cell wall The Mycota I Growth, differentiation and sexuality, 2006 Berlin Springer
Lazăr S, Dobrotă D, Breaz RE, Racz SG. Eco-Design of polymer matrix composite parts: a review Polymers, 2023, 15: 3634.
CrossRef Google scholar
Lee J, Kang HW, Kim SW, Lee CY, Ro HS. Breeding of new strains of mushroom by basidiospore chemical mutagenesis Mycobiol, 2011, 39: 272-277.
CrossRef Google scholar
Lenardon MD, Whitton RK, Munro CA, Marshall D, Gow R. Individual chitin synthase enzymes synthesize microfibrils of differing structure at specific locations in the Candida albicans cell wall Mol Microbiol, 2007, 66: 1164-1173.
CrossRef Google scholar
Lenardon MD, Munro CA, Gow NA. Chitin synthesis and fungal pathogenesis Curr Opin Microbiol, 2010, 13: 416-423.
CrossRef Google scholar
Li S, Cao S, Li X, Zhang Y, Wang X, Zhang X, Lu W, Wang Y. High performance biochar derived from mycelium-based leather composites waste for energy storage applications J Power Sourc, 2024, 620. 235254
CrossRef Google scholar
Lian L, Zhang G, Zhu J, Wang Y, Wang L, Liu R, Shi L, Ren A, Zhao M. Swi6B, an alternative splicing isoform of Swi6, mediates the cell wall integrity of Ganoderma lucidum Environ Microbiol, 2021, 23: 4405-4417.
CrossRef Google scholar
Lingam D, Narayan S, Mamun K, Chara D. Engineered mycelium-based composite materials: Comprehensive study of various properties and applications Constr Build Mater, 2023, 391. 131841
CrossRef Google scholar
Liu K, Sun B, You H, Tu JL, Yu X, Zhao P, Xu JW. Dual sgRNA-directed gene deletion in basidiomycete Ganoderma lucidum using the CRISPR/Cas9 system Microbiol Biotechnol, 2020, 13: 386.
CrossRef Google scholar
Liu X, Dong J, Liao J, Tian L, Qiu H, Wu T, Ge F, Zhu J, Shi L, Jiang A, Yu H, Zhao M, Ren A. Establishment of CRISPR/Cas9 genome-editing system based on dual sgRNAs in Flammulina filiformis J Fungi (Basel), 2022, 8: 693.
CrossRef Google scholar
Liu Y, Ma X, Long Y, Yao S, Wei C, Han X, Gan B, Yan J, Xie B. Effects of β-1,6-glucan synthase gene (FfGS6) overexpression on stress response and fruit body development in Flammulina filiformis Genes, 2022, 13: 1753.
CrossRef Google scholar
Loris GD, Irbe I, Skute M, Filipova I, Andze L, Verovkins A. Hemp shives mycelium composites - an alternative material for traditionally used plastic packaging MSF, 2022.
CrossRef Google scholar
Ma Y, Zhang Q, Zhang Q, He H, Chen Z, Zhao Y, Wei D, Kong M, Huang Q. Improved production of polysaccharides in Ganoderma lingzhi mycelia by plasma mutagenesis and rapid screening of mutated strains through infrared spectroscopy PLoS ONE, 2018, 13. e0204266
CrossRef Google scholar
Madusanka C, Udayanga D, Nilmini R, Rajapaksha S, Hewawasam C, Manamgoda D, Vasco-Correa J. A review of recent advances in fungal mycelium based composites Discov Mater, 2024, 4: 13.
CrossRef Google scholar
Majumder R, Miatur S, Saha A, Ss H. Mycoprotein: production and nutritional aspects: a review Sustainable Food Technol, 2024, 2: 81-91.
CrossRef Google scholar
Manan S, Ullah MW, Ul-Islam M, Atta OM, Yang G. Synthesis and applications of fungal mycelium-based advanced functional materials J Biores Bioprod, 2021, 6: 1-10.
CrossRef Google scholar
Matsunaga Y, Ando M, Izumitsu K, Suzuki K, Honda Y, Irie T. A development and an improvement of selectable markers in Pleurotus ostreatus transformation J Microbiol Methods, 2017, 134: 27-29.
CrossRef Google scholar
Material Innovation Initiative (2022) Next-gen material report. https://materialinnovation.org/wp-content/uploads/MIC-23-Report-230127-1.pdf. Accessed 10Oct 2024
Mayne R, Roberts N, Phillips N, Weerasekera R, Adamatzky A. Propagation of electrical signals by fungi Biosyst, 2023, 229. 104933
CrossRef Google scholar
McGaw J, Andrianopoulos A, Liuti A. Tangled tales of mycelium and architecture: learning from failure Front Built Environ, 2022, 8. 805292
CrossRef Google scholar
MdlL R-F, Cadena-Iñiguez J, Ruiz-Posadas LdM, Arévalo-Galarza MdL, Castillo-Juárez I, Soto Hernández M, Castillo-Martínez CR. Use of gamma radiation for the genetic improvement of underutilized plant varieties Plants, 2022, 11: 1161.
CrossRef Google scholar
Montes B, Restrepo A, McEwen JG. Nuevos aspectos sobre la clasificación de los hongos y su posible aplicación médica [New fungal classification and their applications in medicine] Biomedica, 2003, 23: 213-224.
CrossRef Google scholar
Moon S, Young AJ, Choi YJ, Oh YL, Ro HS, Ryu H. Construction of a CRISPR/Cas9-mediated genome editing system in Lentinula edodes Mycobiol, 2021, 49: 599-603.
CrossRef Google scholar
Muszkieta L, Aimanianda V, Mellado E, Gribaldo S, Alcàzar-Fuoli L, Szewczyk E, Prevost MC, Latgé JP. Deciphering the role of the chitin synthase families 1 and 2 in the in vivo and in vitro growth of Aspergillus fumigatus by multiple gene targeting deletion Cell Microbiol, 2014, 16: 1784-1805.
CrossRef Google scholar
Mishra AK, Kim J, Baghdadi H, Johnson B, Hodge KT, Shephero RF (2024) Sensorimotor control of robots mediated by electrophysiological measurementsof fungal mycelia. Sci Robot 9:eadk8019. https://doi.org/10.1126/scirobotics.adk8019
Nadeem SG, Pirzada A. Nutritional and environmental factors affecting the morphogenesis of Candida albicans: A key to virulence Braz J Biol Sci, 2018, 5: 311-327.
CrossRef Google scholar
Nakauchi H, Amano Y, Tagawa S. Preparation of mycelium pulp from mushroom fruiting bodies ACS Sustainable Chem Eng, 2023, 11: 15789-15794.
CrossRef Google scholar
Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T. Efficient gene targeting in ΔCc.ku70 or ΔCc.lig4 mutants of the agaricomycete Coprinopsis cinerea Fungal Genet Biol, 2011, 48: 939-946.
CrossRef Google scholar
Nakazawa T, Tsuzuki M, Irie T, Sakamoto M, Honda Y. Marker recycling via 5-fluoroorotic acid and 5-fluorocytosine counter-selection in the white-rot agaricomycete Pleurotus ostreatus Fungal Biol, 2016, 120: 1146-1155.
CrossRef Google scholar
Nakazawa T, Inoue C, Nguyen DX, Kawauchi M, Sakamoto M, Honda Y. CRISPR/Cas9 using a transient transformation system in Ceriporiopsis subvermispora Appl Microbiol Biotechnol, 2022, 106: 5575-5585.
CrossRef Google scholar
Nakazawa T, Yamaguchi I, Zhang Y, Saka C, Wu H, Kayama K, Kawauchi M, Sakamoto M, Honda Y. Experimental evidence that lignin-modifying enzymes are essential for degrading plant cell wall lignin by Pleurotus ostreatus using CRISPR/Cas9 Environ Microbiol, 2023, 25: 1909-1924.
CrossRef Google scholar
Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences Appl Microbiol Biotechnol, 2024, 108: 217.
CrossRef Google scholar
Nelsen MP, DiMichele WA, Peters SE, Boyce CK. Delayed fungal evolution did not cause the Paleozoic peak in coal production Proc Natl Acad Sci, 2016, 113: 2442-2447.
CrossRef Google scholar
Niskanen T, Lücking R, Dahlberg A, Gaya E, Suz LM, Mikryukov V, Liimatainen K, Druzhinina I, Westrip JRS, Mueller GM, Martins-Cunha K, Kirk P, Tedersoon L, Antonelli A. Pushing the frontiers of biodiversity research: Unveiling the global diversity, distribution, and conservation of fungi Ann Rev Environ Resourc, 2023, 48(1): 149-176.
CrossRef Google scholar
Nussbaum N, von Wyl T, Gandia A, Romanens E, Ruhs PA, Fisher P. Impact of malt concentration in solid substrate on mycelial growth and network connectivity in Ganoderma species Sci Rep, 2023, 13: 21051.
CrossRef Google scholar
Ogawa M, Kermani AS, Huynh MJ, Baar K, Leach JK, Block DE. Edible mycelium as proliferation and differentiation support for anchorage-dependent animal cells in cultivated meat production NPJ Sci Food, 2024, 8: 23.
CrossRef Google scholar
Özdemir E, Saeidi N, Javadian A, Rossi A, Nolte N, Ren S, Dwan A, Acosta I, Hebel DE, Wurm J, Eversmann P. Wood-veneer-reinforced mycelium composites for sustainable building components Biomimetics, 2022, 7: 39.
CrossRef Google scholar
Papaspyridi LM, Zerva A, Topakas E. Biocatalytic synthesis of fungal β-Glucans Catalysts, 2018, 8: 274.
CrossRef Google scholar
Patel J, Sharma J. Alternative applications of mushroom mycelium for environmental sustainability: opportunities, challenges and future perspective Mushroom Res, 2023, 32: 2.
CrossRef Google scholar
Pham CD, Yu Z, Sandrock B, Bölker M, Gold Scott E, Perlin Michael H. Ustilago maydis Rho1 and 14–3-3 homologues participate in pathways controlling cell separation and cell polarity Eukaryot Cell, 2009, 8: 977-989.
CrossRef Google scholar
Phillips N, Weerasekera R, Roberts N, Gandia A, Adamatzky A. Electrical signal transfer characteristics of mycelium-bound composites and fungal fruiting bodies Fungal Ecol, 2024, 71. 101358
CrossRef Google scholar
Pohl C, Kiel JAKW, Driessen AJM, Bovenberg RAL, Nygard Y. CRISPR/Cas9 based genome editing of Penicillium chrysogenum ACS Synth Biol, 2016, 5: 754-764.
CrossRef Google scholar
Pohl C, Schmidt B, Guitar TN, Klemm S, Gusovius HJ, Platzk S, KruggelEmden H, Klunker A, Vollmecke C, Fleck C, Meyer V. Establishment of the basidiomycete Fomes fomentarius for the production of composite materials Fungal Biol Biotechnol, 2022.
CrossRef Google scholar
Porcarelli D, Brunelli D, Benini L (2012) Characterization of lithium-ion capacitors for low-power energy neutral wireless sensor networks. Ninth International Conference on Networked Sensing (INSS), Antwerp, Belgium, 2012, 1–4. https://doi.org/10.1109/inss.2012.6240578
Porter DL, Naleway SE. Hyphal systems and their effect on the mechanical properties of fungal sporocarps Acta Biomater, 2022, 145: 272-282.
CrossRef Google scholar
Qin H, Xiao H, Zou G, Zhou Z, Zhong JJ. CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species Process Biochem, 2017, 56: 57-61.
CrossRef Google scholar
Raman J, Kim DS, Kim HS, Oh DS, Shin HJ. Mycofabrication of mycelium-based leather from brown-rot fungi J Fungi (Basel), 2022, 8: 317.
CrossRef Google scholar
Rathore RS, Chouhan HS, Prakash D. Influence of plastic waste on the performance of mortar and concrete: a review Mater Today Proc, 2021, 47: 4708-4711.
CrossRef Google scholar
Roberts N, Adamatzky A. Mining logical circuits in fungi Sci Rep, 2022, 12: 15930.
CrossRef Google scholar
Rollin BE. The regulation of animal research and the emergence of animal ethics: a conceptual history Theor Med Bioeth, 2006, 27: 285-304.
CrossRef Google scholar
Roncero C. The genetic complexity of chitin synthesis in fungi Curr Genet, 2002, 41: 367-378.
CrossRef Google scholar
Safeer A, Kleijburg F, Bahri S, Beriashvili D, Veldhuizen E, van Neer J, Tegelaar M, de Cock H, Wösten H, Baldus M. Probing cell-surface interactions in fungal cell walls by high-resolution 1h-detected solid-state NMR spectroscopy Chemistry, 2023.
CrossRef Google scholar
Salame TM, Knop D, Tal D, Levinson D, Yarden O, Hadar Y. Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus Appl Environ Microbiol, 2012, 78: 5341-5352.
CrossRef Google scholar
Salazar-Cerezo S, de Vries RP, Garrigues S. Strategies for the development of industrial fungal producing strains J Fungi (Basel), 2023, 8: 834.
CrossRef Google scholar
Sathesh-Prabu C, Lee YK. Mutation breeding of mushroom by radiation J Radiation Ind, 2011, 5: 285-295
Schiphof K, Kawauchi M, Tsuji K, Yoshimi A, Tanaka C, Nakazawa T, Honda Y. Functional analysis of basidiomycete specific chitin synthase genes in the agaricomycete fungus Pleurotus ostreatus Fungal Genet Biol, 2024, 172: 103893.
CrossRef Google scholar
Schritt H, Vidi S, Pleissner D. Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composites J Clean Prod, 2021, 313: 127910.
CrossRef Google scholar
Shakir MA, Azahari B, Yusup Y, Yhaya MF, Salehabadi A, Ahmad MI. Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite J Adv Res Fluid Mech Therm Sci, 2020, 65: 253-263
Shao GB, Yang P, Jiang WX (2016) Research and preparation of mycelium-soybean straw composite materials. In 2nd Annual International Conference on Advanced Material Engineering (AME 2016) (p. 9–15). Atlantis Press. https://doi.org/10.2991/ame-16.2016.2
Silverman J, Cao H, Cobb K. Development of mushroom mycelium composites for footwear products Cloth Text Res J, 2020, 38: 119-133.
CrossRef Google scholar
Soh E, Chew ZY, Saeidi N, Javadian A, Hebel D, Le Ferrand H. Development of an extrudable paste to build mycelium-bound composites Mater des, 2020, 195. 109058
CrossRef Google scholar
Song R, Zhai Q, Sun L, Huang E, Zhang Y, Zhu Y, Guo Q, Tian Y, Zhao B, Lu H. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective Appl Microbiol Biotechnol, 2019, 103: 6919-6932.
CrossRef Google scholar
Souza Filho PF, Andersson D, Ferreira JA, Taherzadeh MJ. Mycoprotein: environmental impact and health aspects World J Microbiol Biotechnol, 2019, 35: 147.
CrossRef Google scholar
Sugano S, Suzuki H, Shimokita E, Chiba H, Noji S, Osakabe Y, Osakabe K. Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system Sci Rep, 2017, 7: 1260.
CrossRef Google scholar
Sun W, Tajvidi M, Howell C, Hunt CG. Insight into mycelium-lignocellulosic bio-composites: essential factors and properties Compos - a: Appl Sci Manuf, 2022, 161. 107125
CrossRef Google scholar
Sun Y, Nzekoue FK, Vittori S, Sagratini G, Caprioli G. Conversion of ergosterol into vitamin D2 and other photoisomers in Agaricus bisporus mushrooms under UV-C irradiation Food Biosci, 2022, 50. 102143
CrossRef Google scholar
Szaciłowski K, Beasley AE, Mech K, Adamatzky A Adamatzky A. Fungal capacitors Fungal machines Emergence, complexity and computation, 2023 Cham Springer
Tang J, Etacheri V, Pol VG. Wild fungus derived carbon fibers and hydrids as anode for lithium-ion batteries ACS Sustain Chem Eng, 2016, 4: 2624-2631.
CrossRef Google scholar
Teeraphantuvat T, Jatuwong K, Jinanukul P, Thamjaree W, Lumyong S, Aiduang W. Improving the physical and mechanical properties of mycelium-based green composites using paper waste Polymers, 2024, 16: 262.
CrossRef Google scholar
Vašatko H, Gosch L, Jauk J, Stavric M. Basic research of material properties of mycelium-based composites Biomimetics, 2022, 7: 51.
CrossRef Google scholar
Verma N, Jujjavarapu SE, Mahapatra C. Green sustainable biocomposites: substitute to plastics with innovative fungal mycelium based biomaterial J Environ Chem Eng, 2023, 11. 110396
CrossRef Google scholar
Volk R, Schröter M, Saeidi N, Steffl S, Javadian A, Hebel DE, Schultmann F. Life cycle assessment of mycelium-based composite materials Resour Conserv Recycl, 2024, 205. 107579
CrossRef Google scholar
Wainaina S, Taherzadeh MJ. Automation and artificial intelligence in filamentous fungi-based bioprocesses: a review Biores Technol, 2023, 369. 128421
CrossRef Google scholar
Wan Mahari WA, Peng W, Nam WL, Yang H, Lee XY, Lee YK, Liew RK, Ma NL, Mohammad A, Sonne C, Van Le Q, Show PL, Chen WH, Lam SS. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry J Hazard Mater, 2020, 400. 123156
CrossRef Google scholar
Wang DY, Kumar S, Hedges SB. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi Proc Biol Sci, 1999, 266: 163-171.
CrossRef Google scholar
Wang NL, Zhao Y, Zhang BF, Chen MJ. Breeding thermo-tolerant strains of Lentinula edodes by UV induced protoplast mutagenesis Microbiol China, 2014.
CrossRef Google scholar
Wang T, Yue S, Jin Y, Wei H, Lu L. Advances allowing feasible pyrG gene editing by a CRISPR-Cas9 system for the edible mushroom Pleurotus eryngii Fungal Genet Biol, 2021, 147. 103509
CrossRef Google scholar
Wikandari R, Tanugraha DR, Yastanto AJ, Manikharda GR, Teixeira JA. Development of meat substitutes from filamentous fungi cultivated on residual water of tempeh factories Molecules, 2023, 19: 997.
CrossRef Google scholar
Williams E, Cenian K, Golsteijn L, Morris B, Scullin ML. Life cycle assessment of MycoWorks’ Reishi™: the first low-carbon and biodegradable alternative leather Environ Sci Eur, 2022, 34: 120.
CrossRef Google scholar
Xing Y, Brewer M, El-Gharabawy H, Griffith G, Jones P. Growing and testing mycelium bricks as building insulation materials." IOP Conf Ser: Earth Environ Sci, 2018, 121. 022032
CrossRef Google scholar
Xu H, Nakazawa T, Zhang Y, Oh M, Bao D, Kawauchi M, Sakamoto M, Honda Y. Introducing multiple-gene mutations in Pleurotus ostreatus using a polycistronic tRNA and CRISPR guide RNA strategy FEMS Microbiol Lett, 2022.
CrossRef Google scholar
Xu L, Gong Z, Zhang C, Li N, Tang Z, Du J. A mushroom derived biomass carbon as high-stability anode for potassium ion battery J Alloys Compd, 2023, 934. 167820
CrossRef Google scholar
Yamasaki F, Nakazawa T, Minji O, Bao D, Kawauchi M, Sakamoto M, Honda Y. Gene targeting of dikaryotic Pleurotus ostreatus nuclei using the CRISPR/Cas9 system FEMS Microbiol Lett, 2022.
CrossRef Google scholar
Yang L, Park D, Qin Z. Material function of mycelium-based biocomposite: a review Front Mater, 2021, 8. 737377
CrossRef Google scholar
Yoshimi A, Miyazawa K, Kawauchi M, Abe K. Cell wall integrity and its industrial applications in filamentous Fungi J Fungi (Basel), 2022, 8: 435.
CrossRef Google scholar
Zhang C, Meng X, Wei X, Lu L. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus Fungal Genet Biol, 2016, 86: 47-57.
CrossRef Google scholar
Zhang G, Sun Z, Ren A, Shi L, Shi D, Li X, Zhao M. The mitogen-activated protein kinase GlSlt2 regulates fungal growth, fruiting body development, cell wall integrity, oxidative stress and ganoderic acid biosynthesis in Ganoderma lucidum Fungal Genet Biol, 2017, 104: 6-15.
CrossRef Google scholar
Zhang M, Zhang Z, Zhang R, Peng Y, Wang M, Cao J. Lightweight, thermal insulation, hydrophobic mycelium composites with hierarchical porous structure: design, manufacture and applications Compos B Eng, 2023, 266. 111003
CrossRef Google scholar
Zhao J, Burke AF. Review on supercapacitors: technologies and performance evaluation J Energy Chem, 2021, 59: 276-291.
CrossRef Google scholar
Zhu Y, Pan J, Qiu J, Guan X. Optimization of nutritional requirements for mycelial growth and sporulation of entomogenous fungus Aschersonia aleyrodis Webber Braz J Microbiol, 2008, 39: 770-775.
CrossRef Google scholar
Funding
National Research Foundation of Korea(2023K2A9A2A08000176); Japan Society for the Promotion of Science(JPJSBP 120238807); Institute for Fermentation(K-2019-002)

25

Accesses

2

Citations

1

Altmetric

Detail

Sections
Recommended

/