Review on mushroom mycelium-based products and their production process: from upstream to downstream

Hyun-Jae Shin , Hyeon-Su Ro , Moriyuki Kawauchi , Yoichi Honda

Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 3

PDF
Bioresources and Bioprocessing ›› 2025, Vol. 12 ›› Issue (1) : 3 DOI: 10.1186/s40643-024-00836-7
Review

Review on mushroom mycelium-based products and their production process: from upstream to downstream

Author information +
History +
PDF

Abstract

Abstract

The global trend toward carbon neutrality and sustainability calls for collaborative efforts in both the basic and applied research sectors to utilize mushroom mycelia as environmentally friendly and sustainable materials. Fungi, along with animals and plants, are one of the major eukaryotic life forms. They have long been utilized in traditional biotechnology sectors, such as food fermentation, antibiotic production, and industrial enzyme production. Some fungi have also been consumed as major food crops, such as the fruiting bodies of various mushrooms. Recently, new trends have emerged, shifting from traditional applications towards the innovative use of mushroom mycelium as eco-friendly bioresources. This approach has gained attention in the development of alternative meats, mycofabrication of biocomposites, and production of mycelial leather and fabrics. These applications aim to replace animal husbandry and recycle agricultural waste for use in construction and electrical materials. This paper reviews current research trends on industrial applications of mushroom mycelia, covering strain improvements and molecular breeding as well as mycelial products and the production processes. Key findings, practical considerations, and valorization are also discussed.

Graphical Abstract

Cite this article

Download citation ▾
Hyun-Jae Shin, Hyeon-Su Ro, Moriyuki Kawauchi, Yoichi Honda. Review on mushroom mycelium-based products and their production process: from upstream to downstream. Bioresources and Bioprocessing, 2025, 12(1): 3 DOI:10.1186/s40643-024-00836-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abhijith R, Ashok A, Rejeesh CR. Sustainable packaging applications from mycelium to substitute polystyrene: a review Mater Today Proc, 2018, 5: 2139-2145.

[2]

Adamatzky A, Gandia A. On electrical spiking of Ganoderma resinaceum Biophys Rev Lett, 2021, 16: 133-141.

[3]

Adamatzky A, Gandia A. Living mycelium composites discern weights via patterns of electrical activity J Bioresour Bioprod, 2022, 7: 26-32.

[4]

Adamatzky A, Nikolaidou A, Gandia A, Chiolerio A, Dehshib MM. Reactive fungal wearable Biosystems, 2021, 199. 104304

[5]

Aiduang W, Jatuwong K, Luangharn T, Jinanukul P, Thamjaree W, Teeraphantuvat T, Waroonkun T, Lumyong S. A review delving into the factors influencing mycelium-based green composites (MBCs) production and their properties for long-term sustainability targets Biomimetics, 2024, 9: 337.

[6]

Akpasi SO, Anekwe IMS, Tetteh EK, Amune UO, Shoyiga HO, Mahlangu TP, Kiambi SL. Mycoremediation as a potentially promising technology: current status and prospects—a review Appl Sci, 2023, 13: 4978.

[7]

Akromah S, Chandarana N, Rowlandson JL, Eichhorn SJ. Potential environmental impact of mycelium composites on African communities Sci Rep, 2024, 14: 11867.

[8]

Alaneme KK, Anaele JU, Oke TM, Kareem SA, Adediran M, Ajibuwa OA, Anabaranze YO. Mycelium based composites: a review of their bio-fabrication procedures, material properties and potential for green building and construction applications Alex Eng J, 2023, 83: 234-250.

[9]

Alaux N, Vašatko H, Maierhofer D, Saade MRM, Stavric M, Passer A. Environmental potential of fungal insulation: a prospective life cycle assessment of mycelium-based composites Int J Life Cycle Assess, 2024, 29: 255-272.

[10]

Alemu D, Tafesse M, Mondal AK. Mycelium-based composite: the future sustainable biomaterial Int J Biomater, 2022, 12: 8401528.

[11]

Amara AA, El-Baky NA. Fungi as a source of edible proteins and animal feed J Fungi, 2023, 9: 73.

[12]

Amobonye A, Lalung J, Awasthi MK, Pillai S. Fungal mycelium as leather alternative: a sustainable biogenic material for the fashion industry Sustain Mater Technol, 2023, 38. e00724

[13]

Ángeles-Argáiz R, Carmona-Reyes IA, Quintero-Corrales C, Medina-Macías FJ, Blancas-Cabrera A, Valdez-Cruz NA, Ulloa M, Trujillo-Roldán MA, Garibay-Orijel R. From field sampling to pneumatic bioreactor mycelia production of the ectomycorrhizal mushroom Laccaria trichodermophora Fungal Biol, 2020, 124: 205-218.

[14]

Antinori ME, Ceseracciu L, Mancini G, Heredia-Guerrero JA, Athanassiou A. Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials ACS Appl Bio Mater, 2020, 3: 1044-1051.

[15]

Appels FVW, Camere S, Montalti M, Karana E, Jansen KMB, Dijksterhuis J, Krijgsheld P, Wosten HAB. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites Mater des, 2019, 161: 64-71.

[16]

Appels FVW, van den Brandhof JG, Dijksterhuis J, de Kort GW, Wosten HAB. Fungal mycelium classified in different material families based on glycerol treatment Commun Biol, 2020, 3: 334.

[17]

Arantes V, Goodell B Schultz P. Current understanding of brown-rot fungal biodegradation mechanisms a review Deterioration and protection of sustainable biomaterials ACS Symposium Series, 2014 Washington American Chemical Society

[18]

Ariyani NR, Wijayanti SP, Putra NG, Kusumawati MB, Setiawan AAR, Isharyadi F, Widyastuti N, Djarot IN, Handayani T. Mycelium-based leather potential for sustainability: a review AIP Conf Proc, 2024, 3001. 030012

[19]

Awogbemi O, Von Kallon DV. Pretreatment techniques for agricultural waste Case Studies Chem Environ Eng, 2022, 6. 100229

[20]

Bae B, Kim M, Kim S, Ro HS. Growth characteristics of polyporales mushrooms for the mycelial mat formation Mycobiol, 2021, 49: 280-284.

[21]

Balaeș T, Radu BM, Tanase C. Mycelium-composite materials—a promising alternative to plastics? J Fungi (Basel), 2023, 9: 210.

[22]

Bearne S (2023) The mushroom you can wear and build with. https://www.bbc.com/news/business-64810935. Accessed 10 Oct 2024.

[23]

Beauvais A, Bruneau JM, Mol PC, Buitrago MJ, Legrand R, Latgé JP. Glucan synthase complex of Aspergillus fumigatus J Bacteriol, 2001, 183: 2273-2279.

[24]

Bhagarathi LK, Subramanian G, DaSilva PNB. A review of mushroom cultivation and production, benefits and therapeutic potentials World J Biol Pharm Health Sci, 2023, 15: 001-056.

[25]

Boontawon T, Nakazawa T, Inoue C, Osakabe K, Kawauchi M, Sakamoto M, Honda Y. Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus AMB Express, 2021, 11: 30.

[26]

Boontawon T, Nakazawa T, Horii M, Tsuzuki M, Kawauchi M, Sakamoto M, Honda Y. Functional analysis of Pleurotus ostreatus pcc1 and clp1 using CRISPR/Cas9 Fungal Genet Biol, 2021, 154. 103599

[27]

Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall BioEssays, 2006, 28: 799-808.

[28]

Bustillos J, Loganathan A, Agrawal R, Gonzalez BA, Perez MG, Ramaswamy S, Boesl B, Agarwal A. Uncovering the mechanical, thermal, and chemical characteristics of biodegradable mushroom leather with intrinsic antifungal and antibacterial properties ACS Appl Bio Mater, 2020, 3: 3145-3156.

[29]

Campbell B, Ionescu R, Favors Z, Ozkan CS, Ozkan M. Bio-derived, binderless, hierarchically porous carbon anodes for Li-ion batteries Sci Rep, 2015, 5: 14575.

[30]

Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P. Fungi as source for new bio-based materials: a patent review Fungal Biol Biotechnol, 2019, 6: 1-10.

[31]

Chan XY, Saeidi N, Javadian A, Hebel DE, Gupta M. Mechanical properties of dense mycelium-bound composites under accelerated tropical weathering conditions Sci Rep, 2021, 11: 22112.

[32]

Chan E, Webb B (2023) Stella McCartney-backed leather alternative Mylo halts production. https://www.voguebusiness.com/sustainability/stella-mccartney-backed-leather-alternative-mylo-halts-production-bolt-threads-kering-ganni-adidas-lululemon. Accessed 10 Oct 2024

[33]

Choi YJ, Eom H, Yang SH, Nandre R, Kim S, Kim M, Oh YL, Nakazawa T, Honda Y, Ro HS. Heterokaryosis, the main obstacle in the generation of PPO1-edited Agaricus bisporus by CRISPR/Cas9 system Sci Hortic, 2023, 318. 112095

[34]

Coelho J, Correia R, Silvestre S, Pinheiro T, Marques AC, Correia MR, Pinto JV, Fortunato E, Martins R. Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications Microchim Acta, 2023, 190: 40.

[35]

Covington AD, Wise WR. Current trends in leather science J Leather Sci Eng, 2020, 2: 28.

[36]

Crawford A, Miller SR, Branco S, Fletcher J, Stefanov D. Growing mycelium-leather: a paste substrate approach with post-treatments Res Dir, 2024, 2: e6.

[37]

Cui T, Yuan B, Guo H, Tian H, Wang W, Ma Y, Li C, Fei Q. Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping Biotechnol Biofuels, 2021, 14: 162.

[38]

Danninger D, Pruckner R, Holzinger L, Koeppe R, Kaltenbrunner M. MycelioTronics: fungal mycelium skin for sustainable electronics Sci Adv, 2022.

[39]

De Beeck MO, Persson P, Tunlid A. Fungal extracellular polymeric substance matrices–highly specialized microenvironments that allow fungi to control soil organic matter decomposition reactions Soil Biol Biochem, 2021, 159. 108304

[40]

De Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG. Agrobacterium tumefaciens-mediated transformation of filamentous fungi Nat Biotechnol, 1998, 16: 839-842.

[41]

Dehshibi MM, Adamatzky A. Electrical activity of fungi: Spikes detection and complexity analysis Biosyst, 2021, 203. 104373

[42]

Dessi-Olive J. Strategies for growing large-scale mycelium structures Biomimetics, 2022.

[43]

Dichtl K, Samantaray S, Wagener J. Cell wall integrity signalling in human pathogenic fungi Cell Microbiol, 2016, 18: 1228-1238.

[44]

Docimo DJ, Ghanaatpishe M, Rothenberger MJ, Rahn CD, Fathy HI. The lithium-ion battery modeling challenge ASM Int, 2014, 136: S7-S14.

[45]

Dong Y, Miao R, Feng R, Wang T, Yan J, Zhao X, Han X, Gan Y, Lin J, Li Y, Gan B, Zhao J. Edible and medicinal fungi breeding techniques, a review: current status and future prospects Curr Res Food Sci, 2022, 17: 2070-2080.

[46]

Eastwood DC Schultz TP, Goodell D, Nicholas DD. Evolution of fungal wood decay Deterioration and protection of sustainable biomass, 2014 Washington DC American Chemical Society

[47]

Ehren HL, Appels FVW, Houben K, Renault MAM, Wösten HAB, Baldus M. Characterization of the cell wall of a mushroom forming fungus at atomic resolution using solid-state NMR spectroscopy Cell Surf, 2020.

[48]

Elsacker E, Vandelook S, Peeters E. Recent technological innovations in mycelium materials as leather substitutes: a patent review Front Bioeng Biotechnol, 2023, 11: 1204861.

[49]

Enarevba DR, Haapala KR. A comparative life cycle assessment of expanded polystyrene and mycelium packaging box inserts Procedia CIRP, 2023, 116: 654-659.

[50]

Fang Y, Tyler BM. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9 Mol Plant Pathol, 2016, 17: 127-139.

[51]

Feofilova EP. The fungal cell wall: modern concepts of its composition and biological function Microbiology, 2010, 79: 711-720.

[52]

Ferrand HL. Critical review of mycelium-bound product development to identify barriers to entry and paths to overcome them J Clean Prod, 2024, 450. 141859

[53]

Floudas D, Binder M, Riley R, et al.. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes Science, 2012, 336: 1715-1719.

[54]

Fukasawa Y, Hamano K, Kaga K, Akai D, Takehi T. Spatial resource arrangement influences both network structures and activity of fungal mycelia: a form of pattern recognition? Fungal Ecol, 2024, 72. 101387

[55]

Gandia A, Montalti M, Babbini S (2022) Method of producing fungal mats and materials made therefrom. U.S. Patent Application US-10687482B2.

[56]

Gou L, Li S, Yin J, Li T, Liu X. Morphological and physico-mechanical properties of mycelium biocomposites with natural reinforcement particles Constr Build Mater, 2021, 304. 124656

[57]

Gow NAR, Lenardon MD. Architecture of the dynamic fungal cell wall Nat Rev Microbiol, 2023, 21: 248-259.

[58]

Gow NAR, Latge JP, Munro CA. The fungal cell wall: Structure, biosynthesis, and function Microbiol Spectr, 2017, 5: 1-25.

[59]

Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg G, Dubchak I, Shabalov I. MycoCosm portal: gearing up for 1000 fungal genomes Nucleic Acids Res, 2014, 42: D699-D704.

[60]

Gu R, Daihan F, Yuhong J, Mengqiu J, Nie K. Aspergillus niger fermentation residues application to produce biochar for the anode of lithium-ion batteries J Environ Manage, 2023.

[61]

Han Q, Shi M, Han Z, Li Y, Zhang W, Zhang X. Bio-mesopores structure functional composites by mushroom-derived carbon/NiO for lithium-ion batteries J Alloys Compd, 2020, 848. 156477

[62]

Haneef M, Ceseracciu L, Canale C, Bayer IS, Heredia-Guerrero JA, Athanassiou A. Advanced materials from fungal mycelium: fabrication and tuning of physical properties Sci Rep, 2017, 7: 41292.

[63]

Harfi T, Alireza MA, Farzad R, Fariborz ZN. Induced mutation in Agaricus bisporus by gamma ray to improve genetic variability, degradation enzyme activity, and yield Int J Radiat Biol, 2021, 97: 1020-1031.

[64]

Hawksworth D. Coal measure formation and lignin-degrading fungi IMA Fungus, 2012, 3: 55-58.

[65]

Holt GA, Mcintyre G, Flagg D, Bayer E, Wanjura JD, Pelletier MG. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts JBMB, 2012, 6: 431-439.

[66]

Holt RR, Munafo JP Jr, Salmen J, Keen CL, Mistry BS, Whiteley JM, Schmitz HH. Mycelium: A nutrient-dense food to help address world hunger, promote health, and support regenerative food system J Agric Food Chem, 2024, 72: 2697-2707.

[67]

Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M. Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus Curr Genet, 2000, 37: 209-212.

[68]

Hotz EC, Bradshaw AJ, Elliott C, Carlson K, Dentinger BTM, Naleway SE. Effect of agar concentration on structure and physiology of fungal hyphal systems J Mat Res Technol, 2023, 24: 7614-7623.

[69]

Hu X, Yang P, Chai C, Liu J, Sun H, Wu Y, Zhang M, Zhang M, Liu X, Yu H. Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1 Nature, 2023, 616: 190-198.

[70]

Hu C (2023) Inside the lab that’s growing mushroom computer. https://www.popsci.com/technology/unconventional-computing-lab-mushroom. Accessed 10 Oct 2024

[71]

Islam MR, Tudryn G, Bucinell R, Schadler L, Picu RC. Morphology and mechanics of fungal mycelium Sci Rep, 2017, 7: 13070.

[72]

James T, Kauff F, Schoch C, et al.. Reconstructing the early evolution of Fungi using a six-gene phylogeny Nature, 2006, 443: 818-822.

[73]

Jan Vonk P, Escobar N, Wösten HAB, Lugones LG, Ohm RA. High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using pre-assembled Cas9 ribonucleoproteins Sci Rep, 2019, 9: 7632.

[74]

Jeong YH, Kim DS, Shin HJ. Trametes orientalis mycelium mat, can be used as an alternative to elastomers? Biotechnol Bioproc Eng, 2023, 28: 602-611.

[75]

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 2012, 337: 816-821.

[76]

Jo C, Zhang J, Tam JM, Church GM, Khalil AS, Segrè D, Tang TC. Unlocking the magic in mycelium: using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability Mater Today Bio, 2023, 19. 100560

[77]

Jones M, Mautner A, Luenco S, Bismarck A, John S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review Mater des, 2020, 187. 108397

[78]

Jones M, Gandia A, John S, Bismarck A. Leather-like material biofabrication using fungi Nat Sustain, 2021, 4: 9-16.

[79]

Jones MP, Jiang Q, Mautner A, Naghilou A, Prado-Roller A, Wolff M, Koch T, Archodoulaki VM, Bismarck A. Fungal carbon: a cost-effective tunable network template for creating supercapacitors Global Chall, 2024, 8: 2300315.

[80]

Joshi K, Meher MK, Poluri KM. Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications ACS Appl Bio Mater, 2020, 3: 1884-1892.

[81]

Kamiya A, Ueshima H, Nishida S, Honda Y, Kamitsuji H, Sato T, Miyamoto H, Sumita T, Izumitsu K, Irie T. Development of a gene-targeting system using CRISPR/Cas9 and utilization of pyrG as a novel selectable marker in Lentinula edodes FEMS Microbiol Lett, 2023, 370: 1-6.

[82]

Kim JB, Yu DW. Genetic variation in mutants induced by gamma ray in Hypsizigus marmoreus J Life Sci, 2014, 24: 1174-1179.

[83]

Kim S, Ha BS, Ro HS. Current technologies and related issues for mushroom transformation Mycobiol, 2015, 43: 1-8.

[84]

Kim DS, Kim YW, Kim KJ, Shin HJ. Research trend and product development potential of fungal mycelium-based composite materials KSBB J, 2017, 32: 174-178.

[85]

Kim HS, Oh CJ, Jeong KJ, Choi MH, Shin HJ, Oh DS. Culture and mycelim-mat formation characteristics of mutant strains by gamma-ray treatment J Mushrooms, 2020, 18: 393-397.

[86]

Kniep J, Graupner N, Reimer JJ, Müssig J. Mycelium-based biomimetic composite structures as a sustainable leather alternative Mater Today Commun, 2024, 39. 109100

[87]

Kok Kee W, Hock OG, Yee SLS, Er LK. Application of fungi as meat alternatives in industry: mini review J Exp Biol Agric Sci., 2022, 10: 728-736.

[88]

Koshi D, Ueshima H, Kawauchi M, Nakazawa T, Sakamoto M, Hirata M, Izumitsu K, Sumita T, Irie T, Honda Y. Marker-free genome editing in the edible mushroom, Pleurotus ostreatus, using transient expression of genes required for CRISPR/Cas9 and for selection J Wood Sci, 2022, 68: 27.

[89]

Krah FS, Bässler C, Heibl C, Soghigian J, Schaefer H, Hibbett DS. Evolutionary dynamics of host specialization in wood-decay fungi BMC Evol Biol, 2018, 18: 119.

[90]

Kumar B, Kumari C, Kumar M. Effect of bio-fertilizers on mycelial growth and physical properties of white button mushroom [Agaricus bisporus (Lange) Imbach] Int J Curr Microbiol Sci, 2018, 7: 2216-2222.

[91]

Lakhanpal TN. Bioremediation technology for environmental protection through bioconversion of agro-industrial wastes Prog Ind Microbiol, 2002, 36: 101-128.

[92]

Latgé JP, Calderone R Kües U, Fischer R. The fungal cell wall The Mycota I Growth, differentiation and sexuality, 2006 Berlin Springer

[93]

Lazăr S, Dobrotă D, Breaz RE, Racz SG. Eco-Design of polymer matrix composite parts: a review Polymers, 2023, 15: 3634.

[94]

Lee J, Kang HW, Kim SW, Lee CY, Ro HS. Breeding of new strains of mushroom by basidiospore chemical mutagenesis Mycobiol, 2011, 39: 272-277.

[95]

Lenardon MD, Whitton RK, Munro CA, Marshall D, Gow R. Individual chitin synthase enzymes synthesize microfibrils of differing structure at specific locations in the Candida albicans cell wall Mol Microbiol, 2007, 66: 1164-1173.

[96]

Lenardon MD, Munro CA, Gow NA. Chitin synthesis and fungal pathogenesis Curr Opin Microbiol, 2010, 13: 416-423.

[97]

Li S, Cao S, Li X, Zhang Y, Wang X, Zhang X, Lu W, Wang Y. High performance biochar derived from mycelium-based leather composites waste for energy storage applications J Power Sourc, 2024, 620. 235254

[98]

Lian L, Zhang G, Zhu J, Wang Y, Wang L, Liu R, Shi L, Ren A, Zhao M. Swi6B, an alternative splicing isoform of Swi6, mediates the cell wall integrity of Ganoderma lucidum Environ Microbiol, 2021, 23: 4405-4417.

[99]

Lingam D, Narayan S, Mamun K, Chara D. Engineered mycelium-based composite materials: Comprehensive study of various properties and applications Constr Build Mater, 2023, 391. 131841

[100]

Liu K, Sun B, You H, Tu JL, Yu X, Zhao P, Xu JW. Dual sgRNA-directed gene deletion in basidiomycete Ganoderma lucidum using the CRISPR/Cas9 system Microbiol Biotechnol, 2020, 13: 386.

[101]

Liu X, Dong J, Liao J, Tian L, Qiu H, Wu T, Ge F, Zhu J, Shi L, Jiang A, Yu H, Zhao M, Ren A. Establishment of CRISPR/Cas9 genome-editing system based on dual sgRNAs in Flammulina filiformis J Fungi (Basel), 2022, 8: 693.

[102]

Liu Y, Ma X, Long Y, Yao S, Wei C, Han X, Gan B, Yan J, Xie B. Effects of β-1,6-glucan synthase gene (FfGS6) overexpression on stress response and fruit body development in Flammulina filiformis Genes, 2022, 13: 1753.

[103]

Loris GD, Irbe I, Skute M, Filipova I, Andze L, Verovkins A. Hemp shives mycelium composites - an alternative material for traditionally used plastic packaging MSF, 2022.

[104]

Ma Y, Zhang Q, Zhang Q, He H, Chen Z, Zhao Y, Wei D, Kong M, Huang Q. Improved production of polysaccharides in Ganoderma lingzhi mycelia by plasma mutagenesis and rapid screening of mutated strains through infrared spectroscopy PLoS ONE, 2018, 13. e0204266

[105]

Madusanka C, Udayanga D, Nilmini R, Rajapaksha S, Hewawasam C, Manamgoda D, Vasco-Correa J. A review of recent advances in fungal mycelium based composites Discov Mater, 2024, 4: 13.

[106]

Majumder R, Miatur S, Saha A, Ss H. Mycoprotein: production and nutritional aspects: a review Sustainable Food Technol, 2024, 2: 81-91.

[107]

Manan S, Ullah MW, Ul-Islam M, Atta OM, Yang G. Synthesis and applications of fungal mycelium-based advanced functional materials J Biores Bioprod, 2021, 6: 1-10.

[108]

Matsunaga Y, Ando M, Izumitsu K, Suzuki K, Honda Y, Irie T. A development and an improvement of selectable markers in Pleurotus ostreatus transformation J Microbiol Methods, 2017, 134: 27-29.

[109]

Material Innovation Initiative (2022) Next-gen material report. https://materialinnovation.org/wp-content/uploads/MIC-23-Report-230127-1.pdf. Accessed 10Oct 2024

[110]

Mayne R, Roberts N, Phillips N, Weerasekera R, Adamatzky A. Propagation of electrical signals by fungi Biosyst, 2023, 229. 104933

[111]

McGaw J, Andrianopoulos A, Liuti A. Tangled tales of mycelium and architecture: learning from failure Front Built Environ, 2022, 8. 805292

[112]

MdlL R-F, Cadena-Iñiguez J, Ruiz-Posadas LdM, Arévalo-Galarza MdL, Castillo-Juárez I, Soto Hernández M, Castillo-Martínez CR. Use of gamma radiation for the genetic improvement of underutilized plant varieties Plants, 2022, 11: 1161.

[113]

Montes B, Restrepo A, McEwen JG. Nuevos aspectos sobre la clasificación de los hongos y su posible aplicación médica [New fungal classification and their applications in medicine] Biomedica, 2003, 23: 213-224.

[114]

Moon S, Young AJ, Choi YJ, Oh YL, Ro HS, Ryu H. Construction of a CRISPR/Cas9-mediated genome editing system in Lentinula edodes Mycobiol, 2021, 49: 599-603.

[115]

Muszkieta L, Aimanianda V, Mellado E, Gribaldo S, Alcàzar-Fuoli L, Szewczyk E, Prevost MC, Latgé JP. Deciphering the role of the chitin synthase families 1 and 2 in the in vivo and in vitro growth of Aspergillus fumigatus by multiple gene targeting deletion Cell Microbiol, 2014, 16: 1784-1805.

[116]

Mishra AK, Kim J, Baghdadi H, Johnson B, Hodge KT, Shephero RF (2024) Sensorimotor control of robots mediated by electrophysiological measurementsof fungal mycelia. Sci Robot 9:eadk8019. https://doi.org/10.1126/scirobotics.adk8019

[117]

Nadeem SG, Pirzada A. Nutritional and environmental factors affecting the morphogenesis of Candida albicans: A key to virulence Braz J Biol Sci, 2018, 5: 311-327.

[118]

Nakauchi H, Amano Y, Tagawa S. Preparation of mycelium pulp from mushroom fruiting bodies ACS Sustainable Chem Eng, 2023, 11: 15789-15794.

[119]

Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T. Efficient gene targeting in ΔCc.ku70 or ΔCc.lig4 mutants of the agaricomycete Coprinopsis cinerea Fungal Genet Biol, 2011, 48: 939-946.

[120]

Nakazawa T, Tsuzuki M, Irie T, Sakamoto M, Honda Y. Marker recycling via 5-fluoroorotic acid and 5-fluorocytosine counter-selection in the white-rot agaricomycete Pleurotus ostreatus Fungal Biol, 2016, 120: 1146-1155.

[121]

Nakazawa T, Inoue C, Nguyen DX, Kawauchi M, Sakamoto M, Honda Y. CRISPR/Cas9 using a transient transformation system in Ceriporiopsis subvermispora Appl Microbiol Biotechnol, 2022, 106: 5575-5585.

[122]

Nakazawa T, Yamaguchi I, Zhang Y, Saka C, Wu H, Kayama K, Kawauchi M, Sakamoto M, Honda Y. Experimental evidence that lignin-modifying enzymes are essential for degrading plant cell wall lignin by Pleurotus ostreatus using CRISPR/Cas9 Environ Microbiol, 2023, 25: 1909-1924.

[123]

Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences Appl Microbiol Biotechnol, 2024, 108: 217.

[124]

Nelsen MP, DiMichele WA, Peters SE, Boyce CK. Delayed fungal evolution did not cause the Paleozoic peak in coal production Proc Natl Acad Sci, 2016, 113: 2442-2447.

[125]

Niskanen T, Lücking R, Dahlberg A, Gaya E, Suz LM, Mikryukov V, Liimatainen K, Druzhinina I, Westrip JRS, Mueller GM, Martins-Cunha K, Kirk P, Tedersoon L, Antonelli A. Pushing the frontiers of biodiversity research: Unveiling the global diversity, distribution, and conservation of fungi Ann Rev Environ Resourc, 2023, 48(1): 149-176.

[126]

Nussbaum N, von Wyl T, Gandia A, Romanens E, Ruhs PA, Fisher P. Impact of malt concentration in solid substrate on mycelial growth and network connectivity in Ganoderma species Sci Rep, 2023, 13: 21051.

[127]

Ogawa M, Kermani AS, Huynh MJ, Baar K, Leach JK, Block DE. Edible mycelium as proliferation and differentiation support for anchorage-dependent animal cells in cultivated meat production NPJ Sci Food, 2024, 8: 23.

[128]

Özdemir E, Saeidi N, Javadian A, Rossi A, Nolte N, Ren S, Dwan A, Acosta I, Hebel DE, Wurm J, Eversmann P. Wood-veneer-reinforced mycelium composites for sustainable building components Biomimetics, 2022, 7: 39.

[129]

Papaspyridi LM, Zerva A, Topakas E. Biocatalytic synthesis of fungal β-Glucans Catalysts, 2018, 8: 274.

[130]

Patel J, Sharma J. Alternative applications of mushroom mycelium for environmental sustainability: opportunities, challenges and future perspective Mushroom Res, 2023, 32: 2.

[131]

Pham CD, Yu Z, Sandrock B, Bölker M, Gold Scott E, Perlin Michael H. Ustilago maydis Rho1 and 14–3-3 homologues participate in pathways controlling cell separation and cell polarity Eukaryot Cell, 2009, 8: 977-989.

[132]

Phillips N, Weerasekera R, Roberts N, Gandia A, Adamatzky A. Electrical signal transfer characteristics of mycelium-bound composites and fungal fruiting bodies Fungal Ecol, 2024, 71. 101358

[133]

Pohl C, Kiel JAKW, Driessen AJM, Bovenberg RAL, Nygard Y. CRISPR/Cas9 based genome editing of Penicillium chrysogenum ACS Synth Biol, 2016, 5: 754-764.

[134]

Pohl C, Schmidt B, Guitar TN, Klemm S, Gusovius HJ, Platzk S, KruggelEmden H, Klunker A, Vollmecke C, Fleck C, Meyer V. Establishment of the basidiomycete Fomes fomentarius for the production of composite materials Fungal Biol Biotechnol, 2022.

[135]

Porcarelli D, Brunelli D, Benini L (2012) Characterization of lithium-ion capacitors for low-power energy neutral wireless sensor networks. Ninth International Conference on Networked Sensing (INSS), Antwerp, Belgium, 2012, 1–4. https://doi.org/10.1109/inss.2012.6240578

[136]

Porter DL, Naleway SE. Hyphal systems and their effect on the mechanical properties of fungal sporocarps Acta Biomater, 2022, 145: 272-282.

[137]

Qin H, Xiao H, Zou G, Zhou Z, Zhong JJ. CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species Process Biochem, 2017, 56: 57-61.

[138]

Raman J, Kim DS, Kim HS, Oh DS, Shin HJ. Mycofabrication of mycelium-based leather from brown-rot fungi J Fungi (Basel), 2022, 8: 317.

[139]

Rathore RS, Chouhan HS, Prakash D. Influence of plastic waste on the performance of mortar and concrete: a review Mater Today Proc, 2021, 47: 4708-4711.

[140]

Roberts N, Adamatzky A. Mining logical circuits in fungi Sci Rep, 2022, 12: 15930.

[141]

Rollin BE. The regulation of animal research and the emergence of animal ethics: a conceptual history Theor Med Bioeth, 2006, 27: 285-304.

[142]

Roncero C. The genetic complexity of chitin synthesis in fungi Curr Genet, 2002, 41: 367-378.

[143]

Safeer A, Kleijburg F, Bahri S, Beriashvili D, Veldhuizen E, van Neer J, Tegelaar M, de Cock H, Wösten H, Baldus M. Probing cell-surface interactions in fungal cell walls by high-resolution 1h-detected solid-state NMR spectroscopy Chemistry, 2023.

[144]

Salame TM, Knop D, Tal D, Levinson D, Yarden O, Hadar Y. Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus Appl Environ Microbiol, 2012, 78: 5341-5352.

[145]

Salazar-Cerezo S, de Vries RP, Garrigues S. Strategies for the development of industrial fungal producing strains J Fungi (Basel), 2023, 8: 834.

[146]

Sathesh-Prabu C, Lee YK. Mutation breeding of mushroom by radiation J Radiation Ind, 2011, 5: 285-295

[147]

Schiphof K, Kawauchi M, Tsuji K, Yoshimi A, Tanaka C, Nakazawa T, Honda Y. Functional analysis of basidiomycete specific chitin synthase genes in the agaricomycete fungus Pleurotus ostreatus Fungal Genet Biol, 2024, 172: 103893.

[148]

Schritt H, Vidi S, Pleissner D. Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composites J Clean Prod, 2021, 313: 127910.

[149]

Shakir MA, Azahari B, Yusup Y, Yhaya MF, Salehabadi A, Ahmad MI. Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite J Adv Res Fluid Mech Therm Sci, 2020, 65: 253-263

[150]

Shao GB, Yang P, Jiang WX (2016) Research and preparation of mycelium-soybean straw composite materials. In 2nd Annual International Conference on Advanced Material Engineering (AME 2016) (p. 9–15). Atlantis Press. https://doi.org/10.2991/ame-16.2016.2

[151]

Silverman J, Cao H, Cobb K. Development of mushroom mycelium composites for footwear products Cloth Text Res J, 2020, 38: 119-133.

[152]

Soh E, Chew ZY, Saeidi N, Javadian A, Hebel D, Le Ferrand H. Development of an extrudable paste to build mycelium-bound composites Mater des, 2020, 195. 109058

[153]

Song R, Zhai Q, Sun L, Huang E, Zhang Y, Zhu Y, Guo Q, Tian Y, Zhao B, Lu H. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective Appl Microbiol Biotechnol, 2019, 103: 6919-6932.

[154]

Souza Filho PF, Andersson D, Ferreira JA, Taherzadeh MJ. Mycoprotein: environmental impact and health aspects World J Microbiol Biotechnol, 2019, 35: 147.

[155]

Sugano S, Suzuki H, Shimokita E, Chiba H, Noji S, Osakabe Y, Osakabe K. Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system Sci Rep, 2017, 7: 1260.

[156]

Sun W, Tajvidi M, Howell C, Hunt CG. Insight into mycelium-lignocellulosic bio-composites: essential factors and properties Compos - a: Appl Sci Manuf, 2022, 161. 107125

[157]

Sun Y, Nzekoue FK, Vittori S, Sagratini G, Caprioli G. Conversion of ergosterol into vitamin D2 and other photoisomers in Agaricus bisporus mushrooms under UV-C irradiation Food Biosci, 2022, 50. 102143

[158]

Szaciłowski K, Beasley AE, Mech K, Adamatzky A Adamatzky A. Fungal capacitors Fungal machines Emergence, complexity and computation, 2023 Cham Springer

[159]

Tang J, Etacheri V, Pol VG. Wild fungus derived carbon fibers and hydrids as anode for lithium-ion batteries ACS Sustain Chem Eng, 2016, 4: 2624-2631.

[160]

Teeraphantuvat T, Jatuwong K, Jinanukul P, Thamjaree W, Lumyong S, Aiduang W. Improving the physical and mechanical properties of mycelium-based green composites using paper waste Polymers, 2024, 16: 262.

[161]

Vašatko H, Gosch L, Jauk J, Stavric M. Basic research of material properties of mycelium-based composites Biomimetics, 2022, 7: 51.

[162]

Verma N, Jujjavarapu SE, Mahapatra C. Green sustainable biocomposites: substitute to plastics with innovative fungal mycelium based biomaterial J Environ Chem Eng, 2023, 11. 110396

[163]

Volk R, Schröter M, Saeidi N, Steffl S, Javadian A, Hebel DE, Schultmann F. Life cycle assessment of mycelium-based composite materials Resour Conserv Recycl, 2024, 205. 107579

[164]

Wainaina S, Taherzadeh MJ. Automation and artificial intelligence in filamentous fungi-based bioprocesses: a review Biores Technol, 2023, 369. 128421

[165]

Wan Mahari WA, Peng W, Nam WL, Yang H, Lee XY, Lee YK, Liew RK, Ma NL, Mohammad A, Sonne C, Van Le Q, Show PL, Chen WH, Lam SS. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry J Hazard Mater, 2020, 400. 123156

[166]

Wang DY, Kumar S, Hedges SB. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi Proc Biol Sci, 1999, 266: 163-171.

[167]

Wang NL, Zhao Y, Zhang BF, Chen MJ. Breeding thermo-tolerant strains of Lentinula edodes by UV induced protoplast mutagenesis Microbiol China, 2014.

[168]

Wang T, Yue S, Jin Y, Wei H, Lu L. Advances allowing feasible pyrG gene editing by a CRISPR-Cas9 system for the edible mushroom Pleurotus eryngii Fungal Genet Biol, 2021, 147. 103509

[169]

Wikandari R, Tanugraha DR, Yastanto AJ, Manikharda GR, Teixeira JA. Development of meat substitutes from filamentous fungi cultivated on residual water of tempeh factories Molecules, 2023, 19: 997.

[170]

Williams E, Cenian K, Golsteijn L, Morris B, Scullin ML. Life cycle assessment of MycoWorks’ Reishi™: the first low-carbon and biodegradable alternative leather Environ Sci Eur, 2022, 34: 120.

[171]

Xing Y, Brewer M, El-Gharabawy H, Griffith G, Jones P. Growing and testing mycelium bricks as building insulation materials." IOP Conf Ser: Earth Environ Sci, 2018, 121. 022032

[172]

Xu H, Nakazawa T, Zhang Y, Oh M, Bao D, Kawauchi M, Sakamoto M, Honda Y. Introducing multiple-gene mutations in Pleurotus ostreatus using a polycistronic tRNA and CRISPR guide RNA strategy FEMS Microbiol Lett, 2022.

[173]

Xu L, Gong Z, Zhang C, Li N, Tang Z, Du J. A mushroom derived biomass carbon as high-stability anode for potassium ion battery J Alloys Compd, 2023, 934. 167820

[174]

Yamasaki F, Nakazawa T, Minji O, Bao D, Kawauchi M, Sakamoto M, Honda Y. Gene targeting of dikaryotic Pleurotus ostreatus nuclei using the CRISPR/Cas9 system FEMS Microbiol Lett, 2022.

[175]

Yang L, Park D, Qin Z. Material function of mycelium-based biocomposite: a review Front Mater, 2021, 8. 737377

[176]

Yoshimi A, Miyazawa K, Kawauchi M, Abe K. Cell wall integrity and its industrial applications in filamentous Fungi J Fungi (Basel), 2022, 8: 435.

[177]

Zhang C, Meng X, Wei X, Lu L. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus Fungal Genet Biol, 2016, 86: 47-57.

[178]

Zhang G, Sun Z, Ren A, Shi L, Shi D, Li X, Zhao M. The mitogen-activated protein kinase GlSlt2 regulates fungal growth, fruiting body development, cell wall integrity, oxidative stress and ganoderic acid biosynthesis in Ganoderma lucidum Fungal Genet Biol, 2017, 104: 6-15.

[179]

Zhang M, Zhang Z, Zhang R, Peng Y, Wang M, Cao J. Lightweight, thermal insulation, hydrophobic mycelium composites with hierarchical porous structure: design, manufacture and applications Compos B Eng, 2023, 266. 111003

[180]

Zhao J, Burke AF. Review on supercapacitors: technologies and performance evaluation J Energy Chem, 2021, 59: 276-291.

[181]

Zhu Y, Pan J, Qiu J, Guan X. Optimization of nutritional requirements for mycelial growth and sporulation of entomogenous fungus Aschersonia aleyrodis Webber Braz J Microbiol, 2008, 39: 770-775.

Funding

National Research Foundation of Korea(2023K2A9A2A08000176)

Japan Society for the Promotion of Science(JPJSBP 120238807)

Institute for Fermentation(K-2019-002)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

304

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/