Elaboration of an innovative plant biomaterial for its valorization in the treatment of wastewater

El Mokhtar Saoudi Hassani , Imane Mehdaoui , Dounia Azzouni , Rachid Mahmoud , Abdeslam Taleb , Gezahign Fentahun Wondmie , Ahmad Mohammad Salamatullah , Mohammed Bourhia , Samir Ibenmoussa , Mustapha Taleb , Zakia Rais

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 58

PDF
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 58 DOI: 10.1186/s40643-024-00774-4
Research

Elaboration of an innovative plant biomaterial for its valorization in the treatment of wastewater

Author information +
History +
PDF

Abstract

The global scientific community is deeply concerned about the deterioration of water quality resulting from the release of industrial effluents. This issue is of utmost importance as it serves to safeguard the environment and combat water pollution. The objective of this work is to elaborate a biomaterial of vegetable origin, based on the twigs of Aleppo pine, and to use it as an abundant and less expensive material for the treatment of wastewater. For this reason, the twigs were treated physically to get the powder called biomaterial FPA (Aleppo pine fiber), which was characterized by physicochemical, and spectroscopic analyses namely scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The crystallinity index of FPA was evaluated by the peak height method. The findings indicate that the FPA powder has an acidic nature, exhibiting a porous structure that promotes the adsorption and binding of molecules. Additionally, it has a zero charge point of 5.8 and a specific surface area of 384 m2.g−1. It is primarily composed of hydroxyl, carboxyl, and amine functional groups, along with mineral compounds and organic compounds, including cellulose and other mineral elements such as Ca, Mg, Fe, Na, P, Al, K, Ni, and Mo. Combining these characteristics, FPA biomaterial has considerable potential for use as an effective adsorbent biomaterial for various wastewater pollutants. Its abundance and relatively low cost make it an attractive solution to the growing challenges of water pollution worldwide.

Keywords

Material / Aleppo pine / Physicochemical characterization / Spectroscopic characterization

Cite this article

Download citation ▾
El Mokhtar Saoudi Hassani, Imane Mehdaoui, Dounia Azzouni, Rachid Mahmoud, Abdeslam Taleb, Gezahign Fentahun Wondmie, Ahmad Mohammad Salamatullah, Mohammed Bourhia, Samir Ibenmoussa, Mustapha Taleb, Zakia Rais. Elaboration of an innovative plant biomaterial for its valorization in the treatment of wastewater. Bioresources and Bioprocessing, 2024, 11(1): 58 DOI:10.1186/s40643-024-00774-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aditya G, Hossain A. Valorization of aquaculture waste in removal of cadmium from aqueous solution: optimization by kinetics and ANN analysis. Appl Water Sci, 2018, 8(2): 68.

[2]

Alfonso-Muniozguren P, Serna-Galvis Efraím A, Bussemaker M, Torres-Palma RA, Lee J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason Sonochem, 2021, 76: 105656.

[3]

Arora NK, Mishra I. United Nations sustainable development goals 2030 and environmental sustainability: race against time. Environ Sustain, 2019, 2(4): 339-342.

[4]

Azzouni D, Hassani EMS, Rais Z, Taleb M. An excellent alternative to industrial activated carbons for the purification of textile water elaborated from waste coffee grounds. Int J Environ Res, 2022, 16(5): 89.

[5]

Barhoum A, Jeevanandam J, Rastogi A, Samyn P, Boluk Y, Dufresne A, Danquah MK, Bechelany M. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale, 2020, 12(45): 22845-22890.

[6]

Boehm HP. Surface oxides on carbon and their analysis: a critical assessment. Carbon, 2002, 40(2): 145-49.

[7]

Bouchair A, Bouremmad FR et al. (2019) Étude du piégeage de quelques polluants de l’eau par un adsorbant de diverses origines. Thesis. http://dspace.univ-jijel.dz:8080/xmlui/handle/123456789/3998

[8]

Bozbaş SK, Boz Y. Low-cost biosorbent: Anadara inaequivalvis shells for removal of pb(II) and Cu(II) from aqueous solution. Process Saf Environ Prot, 2016, 103(september): 144-152.

[9]

Dhorabe PT, Lataye DH, Ingole RS. Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia glauca Sawdust. Water Sci Technol, 2015, 73(4): 955-966.

[10]

Dimé AKD, Galass Diouf MS, -Chimique de la nappe phréatique située dans une zone a forte pollution industrielle (2020) Caractérisation physico cas de la commune de rufisque

[11]

El mouhri G, Merzouki M, Kachkoul R, Belhassan H, Miyah Y, Amakdouf H, Elmountassir R, Lahrichi A et al (2021) Fixed-bed adsorption of tannery wastewater pollutants using bottom ash: an optimized process. Surfaces Interfaces 22(février):100868. https://doi.org/10.1016/j.surfin.2020.100868

[12]

Emouhri G, Merzouki M, Kachkoul R, Belhassan H, Miyah Y, Amakdouf H, Elmountassir R, Lahrichi A, . Fixed-bed adsorption of tannery wastewater pollutants using bottom ash: an optimized process. Surfaces Interfaces, 2021, 22(février): 100868.

[13]

Francis AO, Ahmad Zaini MA, Zakaria ZA, Muhammad IM, Abdulsalam S, El-Nafaty UA. Equilibrium and kinetics of phenol adsorption by crab shell chitosan. Part Sci Technol, 2021, 39(4): 415-26.

[14]

Haddad K (2018) Etude de la pyrolyse de matériaux biosourcés chimiquement modifiés: Caractérisation des biochars et application agronomique ». These de doctorat, Mulhouse. https://www.theses.fr/2018MULH2159

[15]

Hassan SS, Al-Ghouti MA, Abu-Dieyeh M, McKay G. Novel bioadsorbents based on date pits for organophosphorus pesticide remediation from water. J Environ Chem Eng, 2020, 8(1): 103593.

[16]

Henderson K, Loreau M, . A model of sustainable development goals: challenges and opportunities in promoting human well-being and environmental sustainability. Ecol Modell, 2023, 475(janvier): 110164.

[17]

Hokkanen S, Bhatnagar A, Sillanpää M, . A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res, 2016, 91(mars): 156-73.

[18]

Jang S-K, Jeong H, In-Gyu C. The Effect of cellulose crystalline structure modification on glucose production from chemical-composition-controlled biomass. Sustainability, 2023, 15(7): 5869.

[19]

Jensen CU, Rodriguez Guerrero JK, Karatzos S, Olofsson G, Iversen SB. Fundamentals of Hydrofaction™: renewable crude oil from woody biomass. Biomass Convers Biorefinery, 2017, 7(4): 495-509.

[20]

Jiao M, Yao Y, Chen C, Jiang B, Pastel G, Lin Z, Wu Q, Cui M, He S, Liangbing H. Highly efficient Water treatment via a wood-based and reusable filter. ACS Mater Lett, 2020, 2(4): 430-437.

[21]

Jjagwe J, Olupot PW, Menya E, Kalibbala HM. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review. J Bioresour Bioprod, 2021, 6(4): 292-322.

[22]

Kamali M, Appels L, Kwon EE, Aminabhavi TM, Dewil R. Biochar in water and wastewater treatment-a sustainability assessment. Chem Eng J, 2021, 420: 129946.

[23]

Kamsonlian S, Suresh S, Majumder CB, Chand S. Biosorption of arsenic by mosambi (Citrus limetta) peel: equilibrium, kinetics, thermodynamics and desorption study. Asian J Chem, 2013, 25(5): 2409-2417.

[24]

Kim W, Singh R, Smith JA. Modified crushed oyster shells for fluoride removal from water. Sci Rep, 2020, 10(1): 5759.

[25]

Lazreg F, Moussa LS, Lakhdar Belabid et al. (2018). Antifungal Activities of thymus vulgaris essential oil and the aqueous extract against fusarium species as damping-off agent of aleppo pine seedling. | Biopesticides International | EBSCOhost ». 1 janvier 2018. https://openurl.ebsco.com/contentitem/gcd:135033469?sid=ebsco:plink:crawler&id=ebsco:gcd:135033469.

[26]

Leridon H. Population mondiale: vers une explosion Ou une implosion ?. Popul Sociétés, 2020, 573(1): 1-4.

[27]

Lim A, Phing A. Continuous fixed-bed column study and adsorption modeling: removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons. Biochem Eng J, 2014, 87(juin): 50-61.

[28]

Manju VV, Divakara S, Hegde RVN. Structural and elastic properties of varieties of cotton fibers. Adv Mater Process Technol, 2022, 8(4): 3990-4006.

[29]

Matei E, Râpă M, Predescu AM, Țurcanu AA, Vidu R, Predescu C, Bobirica C, Bobirica L, Orbeci C. Valorization of agri-food wastes as sustainable eco-materials for wastewater treatment: current state and new perspectives. Materials, 2021, 14(16): 4581.

[30]

Mishra B, Kumar P, Kumar C, Saraswat S, Chakraborty S, Gautam A. Water security in a changing environment: concept, challenges and solutions ». Water, 2021, 13(4): 490.

[31]

Rahman Z. An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. J Hazard Mater, 2020, 396: 122682.

[32]

Rais Z, Haji ME, Benabbou M, Majbar Z, Lahlou K, Taleb M, Zaytouni Y, Rheribi R, Nawdali M. Margines: traitement, valorisation dans la germination des graines de tomate et dans la filière de compostage. Revue Des Sci De L’eau / J Water Sci, 2017, 30(1): 57-62.

[33]

Randers J. 2052: a global forecast for the next forty years, 2012, White River Junction: Chelsea Green Publishing.

[34]

Rathi B, Kumar PS, Vo DV. Critical review on hazardous pollutants in water environment: occurrence, monitoring, fate, removal technologies and risk assessment. Sci Total Environ, 2021, 797: 149134.

[35]

Sang S, Zhuang X, Chen H, Qin Y, Cao J, Lan FFT. Effect of supramolecular structural changes during the crystalline transformation of cellulose on its enzymatic hydrolysis. Industrial Crops Products, 2022, 180(juin): 114687.

[36]

Saoudi Hassani E, Mokhtar D, Azzouni MM, Alanazi I, Mehdaoui R, Mahmoud A, Kabra A, Taleb M, Rais TZ. Innovative plant-derived biomaterials for sustainable and effective removal of Cationic and Anionic dyes: kinetic and thermodynamic study. Processes, 2024, 12(5): 922.

[37]

Sebayang, Darwin, Sulaiman Hasan et al. 2012. Electroplating. BoD–Books on Demand. https://books.google.com/books?hl=en&lr=&id=vgOaDwAAQBAJ&oi=fnd&pg=PR11&dq=Sebayang+and+Hasan+(2012)&ots=_cVdC9PxNX&sig=99QrSJDWge_IKOG2FisI8okZYfE.

[38]

Segal L, Creely JJ, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J, 1959, 29(10): 786-794.

[39]

Serna et al. 2014. s. d. Consulté le 13 mars 2024. http://chimienouvelle.be/CN116web/CN166%20serna.pdf

[40]

Servant L, Le Bourdon G, Buffeteau T. Comprendre la spectroscopie infrarouge: principes et mise en oeuvre. Photoniques, 2011, 53: 68-73.

[41]

Soares AM, Valério P, Silva RJ, Alves LC, de Fátima Araújo M. Una revisión de los discos de Fortios. Trabajos de Prehistoria, 2017, 74(1): 181-4.

[42]

Temesgen F, Gabbiye N, Sahu O. Biosorption of reactive red dye (RRD) on activated surface of banana and orange peels: economical alternative for textile effluent. Surf Interfaces, 2018, 12(septembre): 151-159.

[43]

Van De Ven TG, Godbout L. Cellulose: fundamental aspects. Norderstedt: BoD–Books on Demand; 2013

[44]

Wang K, Peng N, Sun J, Lu G, Chen M, Deng F, Dou R, Nie L, Zhong Y. Synthesis of silica-composited biochars from alkali-fused fly ash and agricultural wastes for enhanced adsorption of methylene blue. Sci The Total Environ, 2020, 729(août): 139055.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/