Incorporation of canola meal as a sustainable natural filler in PLA foams

Stephanie Weal, Samir Shah, Kate Parker, Alankar Vaidya

Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 57.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2024, Vol. 11 ›› Issue (1) : 57. DOI: 10.1186/s40643-024-00773-5
Research

Incorporation of canola meal as a sustainable natural filler in PLA foams

Author information +
History +

Abstract

Valorization of CM as a sustainable natural filler in PLA biocomposite foams

Modification of CM is not mandatory for interphase compatibility with the PLA

PLA-CM foams have similar appearance and properties to control PLA foams

New PLA-CM foams can be a good alternative in the packaging industry

Keywords

Biocomposite / Canola meal / Foam / Natural filler / Packaging / Poly(lactic acid)

Cite this article

Download citation ▾
Stephanie Weal, Samir Shah, Kate Parker, Alankar Vaidya. Incorporation of canola meal as a sustainable natural filler in PLA foams. Bioresources and Bioprocessing, 2024, 11(1): 57 https://doi.org/10.1186/s40643-024-00773-5

References

Alashi AM, Blanchard CL, Mailer RJ, Agboola SO. Technological and bioactive functionalities of canola meal proteins and hydrolysates. Food Reviews Int, 2013, 29: 231-260.
CrossRef Google scholar
Bourmaud A, Beaugrand J, Shah DU, Placet V, Baley C. Towards the design of high-performance plant fibre composites. Prog Mater Sci, 2018, 97: 347-408.
CrossRef Google scholar
de Lima GG, Schoenherr ZCP, Magalhães WLE, . Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes. Bioresour Bioprocess, 2020, 7: 58.
CrossRef Google scholar
de Teixeira M, de Campos E, Marconcini A, Bondancia JM, Wood TJ, Klamczynski D, Mattoso A, Glenn LHC. Starch/fiber/poly(lactic acid) foam and compressed foam composites. RSC Adv, 2014, 4: 6616.
CrossRef Google scholar
Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM. Green composites: a review of material attributes and complementary applications. Compos Part A: Appl Sci Manuf, 2014, 56: 280-289.
CrossRef Google scholar
Din NAS, Lim SJ, Maskat MY, . Lactic acid separation and recovery from fermentation broth by ion-exchange resin: a review. Bioresour Bioprocess, 2021, 8: 31.
CrossRef Google scholar
Gurunathan T, Mohanty S, Nayak SK. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A: Appl Sci Manuf, 2015, 77: 1-25.
CrossRef Google scholar
Han Y, Ho WW. Recent advances in polymeric membranes for CO2 capture. Chin J Chem Eng, 2018, 26(11): 2238-2254.
CrossRef Google scholar
Hassan NAA, Ahmad S, Chen RS, Shahdan D, Kassim MHM. Tailoring lightweight, mechanical and thermal performance of PLA/recycled HDPE biocomposite foams reinforced with kenaf fibre. Ind Crops Prod, 2023, 197: 116632.
CrossRef Google scholar
Huda MS, Drzal LT, Mohanty AK, Misra M. Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interface, 2008, 15: 169-191.
CrossRef Google scholar
Jandas PJ, Mohanty S, Nayak SK. Mechanical properties of surface-treated banana fiber/polylactic acid biocomposites: a comparative study of theoretical and experimental values. J Appl Polym Sci, 2012, 127: 4027-4038.
CrossRef Google scholar
Khattab RY, Arntfield SD. Functional properties of raw and processed canola meal. LWT-Food Sci Technol, 2009, 42: 1119-1124.
CrossRef Google scholar
Li S, Ciardullo K, Donner E, Thompson MR, Rempel C, Liu Q. Reactive extrusion preparation and characterization of canola meal composites reinforced by a novel polymeric chain extender. Mater Des, 2018, 138: 1-10.
CrossRef Google scholar
Li S, Ciardullo K, Donner E, Thompson MR, Rempel C, Liu Q. Reactive processing preparation of sustainable composites from canola meal reinforced by chemical modification. Eur Polym J, 2018, 102: 187-194.
CrossRef Google scholar
Manamperi WA, Pryor SW, Chang SK (2007) Separation and Evaluation of Canola Meal and Protein for Industrial Bioproducts. ASABE Section Meeting Paper No. RRV-07116, St. Joseph, Michigan, 2007. https://doi.org/10.13031/2013.24173
Manjula P, Srinikethan G, Shetty KV. Biofibres from Biofuel industrial byproduct—Pongamia pinnata seed hull. Bioresour Bioprocess, 2017, 4: 14.
CrossRef Google scholar
Milovanovic S, Lukic I, Horvat G, Novak Z, Frerich S, Petermann M, García-González CA. Green Processing of Neat Poly (lactic acid) using Carbon Dioxide under elevated pressure for Preparation of Advanced materials: a review (2012–2022). Polymers, 2023, 15(4): 860.
CrossRef Google scholar
Mysiukiewicz O, Sulej-Chojnacka J, Kotkowiak M, Wiśniewski T, Piasecki A, Barczewski M. Evaluation of the Oil-Rich Waste Fillers’ influence on the Tribological properties of Polylactide-based composites. Materials, 2022, 15: 1237.
CrossRef Google scholar
Nofar M, Park CB. Poly (lactic acid) foaming. Prog Polym Sci, 2014, 39(10): 1721-1741.
CrossRef Google scholar
Okada M. Chemical syntheses of biodegradable polymers. Prog Poly Sc, 2002, 27: 87-133.
CrossRef Google scholar
Okubo K, Fujii T, Thostenson ET. Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A: Appl Sci Manuf, 2009, 40: 469-475.
CrossRef Google scholar
Siakeng R, Jawaid M, Ariffin H, Sapuan SM, Asim M, Saba N. Natural fiber reinforced polylactic acid composites: a review. Polym Compos, 2019, 40(2): 446-463.
CrossRef Google scholar
Standau T, Zhao C, Murillo Castellón S, Bonten C, Altstädt V. Chemical Modification and Foam Processing of Polylactide (PLA). Polymers, 2019, 11(2): 306.
CrossRef Google scholar
Sun J, Zhao Z, Pang Y, Liu J, Zhang W, Wang B, Liu Y. The facile and efficient fabrication of Rice Husk/poly (lactic acid) foam composites by coordinated the interface combination and bubble hole structure. Int J Biol Macromol, 2023, 234: 123734.
CrossRef Google scholar
Tene Tayo JL, Bettelhäuser RJ, Euring M. Canola Meal as Raw Material for the development of Bio-adhesive for medium density fiberboards (MDFs) and Particleboards Production. Polymers, 2022, 14: 3554.
CrossRef Google scholar
Vaidya A, Gaugler M, Smith DA. Green route to modification of wood waste, cellulose and hemicellulose using reactive extrusion. Carbohydr Polym, 2016, 136: 1238-1250.
CrossRef Google scholar
Vaidya AA, Hussain I, Gaugler M, Smith DA. Synthesis of graft copolymers of chitosan-poly(caprolactone) by lipase catalysed reactive extrusion. Carbohydr Polym, 2019, 217: 98-109.
CrossRef Google scholar
Villamil Jiménez JA, Sabir S, Sauceau M, Sescousse R, Espitalier F, Le Moigne N, Bénézet J-C, Fages J. Supercritical CO2 assisted extrusion foaming of PLA- cellulose fibre composites: Effect of fibre on foam processing and morphology. J Supercritical Fluids, 2024, 207: 106190.
CrossRef Google scholar
Way C, Wu DY, Cram D, Dean K, Palombo E. Processing stability and biodegradation of polylactic acid (PLA) composites reinforced with cotton linters or maple hardwood fibers. J Polym Environ, 2013, 21: 54-70.
CrossRef Google scholar
Wedin R. Chemistry on a high-carb Diet, 2004, Washington, D.C: American Chemical Society.
Witt MRJ, Shah S (2008) Methods of manufacture of Polylactic Acid Foams. WI 2008/093284.
Yang Z, Huang Z, Cao L. Biotransformation technology and high-value application of rapeseed meal: a review. Bioresour Bioprocess, 2022, 9: 103.
CrossRef Google scholar
Yilmaz A, Özkan H, Elif Genceli Güner F. Utilizing the potential of waste hemp reinforcement: investigating mechanical and thermal properties of polypropylene and polylactic acid biocomposites. ACS Omega, 2024, 9: 8818-8828.
CrossRef Google scholar
Yu T, Jiang N, Li Y. Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Compos Part A: Appl Sci Manuf, 2014, 64: 139-146.
CrossRef Google scholar
Zhao Y, Ma CY, Yuen SN, Phillips DL. Study of succinylated food proteins by Raman spectroscopy. J Agric Food Chem, 2004, 2(7): 1815-1823.
CrossRef Google scholar
Zhong J, Li H, Yu J, Tan T. Effects of Natural Fiber Surface Modification on Mechanical properties of Poly(lactic acid) (PLA)/Sweet Sorghum Fiber composites. Polym Plast Technol Eng, 2011, 50: 1583-1589.
CrossRef Google scholar
Zini E, Scandola M. Green composites: an overview. Polym Compos, 2011, 32: 1905-1915.
CrossRef Google scholar
Funding
Scion(Biopolymer Network Limited)

41

Accesses

2

Citations

1

Altmetric

Detail

Sections
Recommended

/