Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications

Rebecca Bährle , Stefanie Böhnke , Jonas Englhard , Julien Bachmann , Mirjam Perner

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 84

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 84 DOI: 10.1186/s40643-023-00705-9
Review

Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications

Author information +
History +
PDF

Abstract

Anthropogenic carbon dioxide (CO2) levels are rising to alarming concentrations in earth’s atmosphere, causing adverse effects and global climate changes. In the last century, innovative research on CO2 reduction using chemical, photochemical, electrochemical and enzymatic approaches has been addressed. In particular, natural CO2 conversion serves as a model for many processes and extensive studies on microbes and enzymes regarding redox reactions involving CO2 have already been conducted. In this review we focus on the enzymatic conversion of CO2 to carbon monoxide (CO) as the chemical conversion downstream of CO production render CO particularly attractive as a key intermediate. We briefly discuss the different currently known natural autotrophic CO2 fixation pathways, focusing on the reversible reaction of CO2, two electrons and protons to CO and water, catalyzed by carbon monoxide dehydrogenases (CODHs). We then move on to classify the different type of CODHs, involved catalyzed chemical reactions and coupled metabolisms. Finally, we discuss applications of CODH enzymes in photochemical and electrochemical cells to harness CO2 from the environment transforming it into commodity chemicals.

Keywords

CO2 fixing microorganisms / Carbon monoxide dehydrogenase (CODH) / CO2 reduction / Electrocatalysis / Biocatalysts

Cite this article

Download citation ▾
Rebecca Bährle, Stefanie Böhnke, Jonas Englhard, Julien Bachmann, Mirjam Perner. Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications. Bioresources and Bioprocessing, 2023, 10(1): 84 DOI:10.1186/s40643-023-00705-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adam N, Perner M. Novel hydrogenases from deep-sea hydrothermal vent metagenomes identified by a recently developed activity-based screen. ISME J, 2018, 12(5): 1225-1236.

[2]

Adam PS, Borrel G, Gribaldo S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. PNAS, 2018, 115(6): E1166-E1173.

[3]

Aduhene AG, Cui H, Yang H, Liu C, Sui G, Liu C. Poly (3-hydroxypropionate): Biosynthesis Pathways and Malonyl-CoA Biosensor Material Properties. Front Bioeng Biotechnol, 2021, 9.

[4]

Akash S, Sivaprakash B, Rajamohan N, Vo D-VN. Biotechnology to convert carbon dioxide into biogas, bioethanol, bioplastic and succinic acid using algae, bacteria and yeast: a review. Environ Chem Lett, 2023, 21(3): 1477-1497.

[5]

Alfano M, Cavazza C. The biologically mediated water–gas shift reaction: structure, function and biosynthesis of monofunctional [NiFe]-carbon monoxide dehydrogenases. Sustain Energy Fuels, 2018, 2(8): 1653-1670.

[6]

Alves JI, Visser M, Arantes AL, . Effect of sulfate on carbon monoxide conversion by a thermophilic syngas-fermenting culture dominated by a desulfofundulus species. Front Microbiol, 2020, 11.

[7]

Amao Y, Ikeyama S. Discovery of the reduced form of methylviologen activating formate dehydrogenase in the catalytic conversion of carbon dioxide to formic acid. Chem Lett, 2015, 44(9): 1182-1184.

[8]

Anand A, Satyanarayana T. Applicability of carboxydotrophic bacterial carbon monoxide dehydrogenase (CODH) in carbon sequestration and bioenergy generation. J Sci Ind Res, 2012, 71: 381-384.

[9]

Appel AM, Bercaw JE, Bocarsly AB, . Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev, 2013, 113(8): 6621-6658.

[10]

Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. J Exp Bot, 2012, 63(6): 2325-2342.

[11]

Bassham JA, Calvin M. The way of CO2 in plant photosynthesis. Comp Biochem Physiol A, 1962, 4: 187-204.

[12]

Bates NR, Johnson RJ. Acceleration of ocean warming, salinification, deoxygenation and acidification in the surface subtropical North Atlantic Ocean. Commun Earth Environ, 2020, 1(1): 33.

[13]

Becker JM, Lielpetere A, Szczesny J, . Bioelectrocatalytic CO(2) reduction by redox polymer-wired carbon monoxide dehydrogenase gas diffusion electrodes. ACS Appl Mater Interfaces, 2022, 14(41): 46421-46426.

[14]

Bender G, Ragsdale SW. Evidence that ferredoxin interfaces with an internal redox shuttle in Acetyl-CoA synthase during reductive activation and catalysis. Biochem, 2011, 50(2): 276-286.

[15]

Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol, 2011, 77(6): 1925-1936.

[16]

Berg IA, Kockelkorn D, Buckel W, Fuchs G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science, 2007, 318(5857): 1782-1786.

[17]

Bertsch J, Müller V. CO Metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol, 2015, 81(17): 5949-5956.

[18]

Biegel E, Müller V. Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. PNAS, 2010, 107(42): 18138-18142.

[19]

Biegel E, Schmidt S, Gonzalez JM, Müller V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci, 2011, 68(4): 613-634.

[20]

Bierbaumer S, Nattermann M, Schulz L, . Enzymatic conversion of CO(2): from natural to artificial utilization. Chem Rev, 2023, 123(9): 5702-5754.

[21]

Biester A, Dementin S, Drennan CL. Visualizing the gas channel of a monofunctional carbon monoxide dehydrogenase. J Inorg Biochem, 2022, 230.

[22]

Blatti JL, Michaud J, Burkart MD. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol, 2013, 17(3): 496-505.

[23]

Boer JL, Mulrooney SB, Hausinger RP. Nickel-dependent metalloenzymes. Arch Biochem Biophys, 2014, 544: 142-152.

[24]

Böhnke S, Perner M. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity. ISME J, 2015, 9(3): 735-745.

[25]

Böhnke S, Perner M. Unraveling RubisCO form I and form II regulation in an uncultured organism from a deep-sea hydrothermal vent via metagenomic and mutagenesis studies. Front Microbiol, 2017, 8: 1303.

[26]

Böhnke S, Perner M. Approaches to unmask functioning of the uncultured microbial majority from extreme habitats on the seafloor. Front Microbiol, 2022, 13.

[27]

Bonam D, Murrell SA, Ludden PW. Carbon monoxide dehydrogenase from Rhodospirillum rubrum. J Bacteriol, 1984, 159(2): 693-699.

[28]

Brauko KM, Cabral A, Costa NV, . Marine heatwaves, sewage and eutrophication combine to trigger deoxygenation and biodiversity loss: A SW Atlantic case study. Front Mar Sci, 2020

[29]

Buchanan BB, Arnon DI. A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res, 1990, 24: 47-53.

[30]

Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA. Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem Commun, 2012, 48(1): 58-60.

[31]

Claassens NJ. Reductive glycine pathway: a versatile route for one-carbon biotech. Trends Biotechnol, 2021, 39(4): 327-329.

[32]

Contaldo U, Curtil M, Perard J, Cavazza C, Le Goff A. A Pyrene-Triazacyclononane Anchor Affords High Operational Stability for CO(2) RR by a CNT-Supported Histidine-Tagged CODH. Angew Chem Inter Ed, 2022, 61(21

[33]

Contaldo U, Guigliarelli B, Perard J, Rinaldi C, Le Goff A, Cavazza C. Efficient Electrochemical CO2/CO interconversion by an engineered carbon monoxide dehydrogenase on a gas-diffusion carbon nanotube-based bioelectrode. ACS Catal, 2021, 11(9): 5808-5817.

[34]

Cordero PRF, Bayly K, Man Leung P, . Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J, 2019, 13(11): 2868-2881.

[35]

Datta S, Christena LR, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. Biotech, 2013, 3(1): 1-9.

[36]

David AE, Yang AJ, Wang NS. Minteer SD. Enzyme stabilization and immobilization by sol-gel entrapment. Enzyme stabilization and immobilization: methods and protocols, 2011, Totowa, NJ: Humana Press, 49-66.

[37]

Diekert GB, Thauer RK. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol, 1978, 136(2): 597-606.

[38]

Diender M, Stams AJ, Sousa DZ. Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol, 2015, 6: 1275.

[39]

Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O. Catalysis at a dinuclear [CuSMo(O)OH] cluster in a CO dehydrogenase resolved at 1.1–A resolution. PNAS, 2002, 99(25): 15971-15976.

[40]

Dobbek H, Gremer L, Meyer O, Huber R. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. PNAS, 1999, 96(16): 8884-8889.

[41]

Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL. A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science, 2002, 298(5593): 567-572.

[42]

Drake HL. Drake HL. Acetogenesis, acetogenic bacteria, and the acetyl-coa “wood/ljungdahl” pathway: past and current perspectives. Acetogenesis, 1994, Boston: Springer, 3-60.

[43]

Drake HL, Kusel K, Matthies C. Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie Van Leeuwenhoek, 2002, 81(1–4): 203-213.

[44]

Drennan CL, Heo J, Sintchak MD, Schreiter E, Ludden PW. Life on carbon monoxide: x-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. PNAS, 2001, 98(21): 11973-11978.

[45]

Ensign SA, Ludden PW. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. J Biol Chem, 1991, 266(27): 18395-18403.

[46]

Erb TJ. Carboxylases in natural and synthetic microbial pathways. Appl Environ Microbiol, 2011, 77(24): 8466-8477.

[47]

Fawzy S, Osman AI, Doran J, Rooney DW. Strategies for mitigation of climate change: a review. Environ Chem Lett, 2020, 18(6): 2069-2094.

[48]

Ferry JG. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev, 1999, 23(1): 13-38.

[49]

Ferry JG. Biochemistry of acetotrophic methanogenesis, 2010, Heidelberg: Springer, 357-367.

[50]

Fesseler J, Jeoung JH, Dobbek H. How the [NiFe4S4] cluster of CO dehydrogenase activates CO2 and NCO(-). Angew Chem Inter Ed, 2015, 54(29): 8560-8564.

[51]

Fischer R, Thauer RK. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett, 1990, 269(2): 368-372.

[52]

Fox-Kemper B. Ocean, cryosphere and sea level change, 2021, New Orleans: AGU Fall Meeting Abstracts.

[53]

Fox JD, He Y, Shelver D, Roberts GP, Ludden PW. Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J Bacteriol, 1996, 178(21): 6200-6208.

[54]

Fox JD, Kerby RL, Roberts GP, Ludden PW. Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J Bacteriol, 1996, 178(6): 1515-1524.

[55]

Freire R, Pessoa C, Kubota L. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity. J Braz Chem Soc, 2003, 14(2): 230-243.

[56]

Friedlingstein P, Jones MW, O'Sullivan M, . Global carbon budget 2021. Earth Syst Sci Data, 2022, 14(4): 1917-2005.

[57]

Frunzke K, Meyer O. Nitrate respiration, denitrification, and utilization of nitrogen sources by aerobic carbon monoxide-oxidizing bacteria. Arch Microbiol, 1990, 154(2): 168-174.

[58]

Fuchs G. Drake HL. Variations of the acetyl-CoA pathway in diversely related microorganisms that are not acetogens. Acetogenesis, 1994, Boston: Springer, 507-520.

[59]

Fuhrmann JJ. Gentry TJ, Fuhrmann JJ, Zuberer DA. Microbial metabolism. Principles and applications of soil microbiology, 2021, 3, Amsterdam: Elsevier, 57-87.

[60]

Fujimori S, Inoue S. Carbon monoxide in main-group chemistry. J Am Chem Soc, 2022, 144(5): 2034-2050.

[61]

Fukuyama Y, Inoue M, Omae K, Yoshida T, Sako Y. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: versatile microbial conversion of a toxic gas into an available energy. Adv Appl Microbiol, 2020, 110: 99-148.

[62]

Grahame DA, DeMoll E. Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochem, 1995, 34(14): 4617-4624.

[63]

Grahame DA, Gencic S, DeMoll E. A single operon-encoded form of the acetyl-CoA decarbonylase/synthase multienzyme complex responsible for synthesis and cleavage of acetyl-CoA in Methanosarcina thermophila. Arch Microbiol, 2005, 184(1): 32-40.

[64]

Hayer-Hartl M, Hartl FU. Chaperone machineries of rubisco–the most abundant enzyme. Trends Biochem Sci, 2020, 45(9): 748-763.

[65]

Hedderich R, Forzi L. Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol, 2005, 10(2–4): 92-104.

[66]

Henson SA, Beaulieu C, Ilyina T, . Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat Commun, 2017, 8: 14682.

[67]

Henstra AM, Stams AJ. Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol, 2004, 70(12): 7236-7240.

[68]

Henstra AM, Stams AJM. Deep conversion of carbon monoxide to hydrogen and formation of acetate by the anaerobic thermophile Carboxydothermus hydrogenoformans. Inter J Microbiol, 2011, 2011.

[69]

Hess V, Schuchmann K, Müller V. The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem, 2013, 288(44): 31496-31502.

[70]

Hille R, Dingwall S, Wilcoxen J. The aerobic CO dehydrogenase from Oligotropha carboxidovorans. J Biol Inorg Chem, 2015, 20(2): 243-251.

[71]

Hocking WP, Roalkvam I, Magnussen C, Stokke R, Steen IH. Assessment of the carbon monoxide metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus VC-16 by comparative transcriptome analyses. Archaea, 2015, 2015.

[72]

Hoeben FJM, Heller I, Albracht SPJ, Dekker C, Lemay SG, Heering HA. Polymyxin-coated Au and carbon nanotube electrodes for stable [NiFe]-hydrogenase film voltammetry. Langmuir, 2008, 24(11): 5925-5931.

[73]

Hoshino T, Inagaki F. Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments. Lett Appl Microbiol, 2017, 64(5): 355-363.

[74]

Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB. 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol, 2000, 66(4): 1474-1478.

[75]

Huber H, Gallenberger M, Jahn U, . A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. PNAS, 2008, 105(22): 7851-7856.

[76]

Hügler M, Sievert SM. Beyond the calvin cycle: autotrophic carbon fixation in the Ocean. Annu Rev Mar Sci, 2011, 3(1): 261-289.

[77]

Ikeyama S, Amao Y. Novel artificial coenzyme based on the viologen derivative for CO2 reduction biocatalyst formate dehydrogenase. Chem Lett, 2016, 45(11): 1259-1261.

[78]

Inoue M, Nakamoto I, Omae K, Oguro T, Ogata H, Yoshida T, Sako Y. Structural and phylogenetic diversity of anaerobic carbon-monoxide dehydrogenases. Front Microbiol, 2018, 9: 3353.

[79]

Inoue M, Omae K, Nakamoto I, Kamikawa R, Yoshida T, Sako Y. Biome-specific distribution of Ni-containing carbon monoxide dehydrogenases. Extremophiles, 2022, 26(1): 9.

[80]

Islam ZF, Cordero PRF, Feng J, . Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J, 2019, 13(7): 1801-1813.

[81]

Jacobitz S, Meyer O. Removal of CO dehydrogenase from Pseudomonas carboxydovorans cytoplasmic membranes, rebinding of CO dehydrogenase to depleted membranes, and restoration of respiratory activities. J Bacteriol, 1989, 171(11): 6294-6299.

[82]

Jeoung JH, Dobbek H. Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science, 2007, 318(5855): 1461-1464.

[83]

Jeoung JH, Fesseler J, Goetzl S, Dobbek H. Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases. Met Ions Life Sci, 2014, 14: 37-69.

[84]

Jeoung JH, Martins BM, Dobbek H. Carbon monoxide dehydrogenases. Methods Mol Biol, 2019, 1876: 37-54.

[85]

Jin P, Gao K. Häder D-P, Helbling EW, Villafañe VE. Effects of ocean acidification on marine primary producers and related ecological processes under multiple stressors. Anthropogenic pollution of aquatic ecosystems, 2021, Cham: Springer, 401-426.

[86]

Jones SW, Fast AG, Carlson ED, . CO(2) fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun, 2016, 7: 12800.

[87]

Kajla S, Kumari R, Nagi GK. Microbial CO(2) fixation and biotechnology in reducing industrial CO(2) emissions. Arch Microbiol, 2022, 204(2): 149.

[88]

Kennedy J, Marchesi JR, Dobson AD. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol, 2007, 75(1): 11-20.

[89]

Kerby RL, Hong SS, Ensign SA, Coppoc LJ, Ludden PW, Roberts GP. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J Bacteriol, 1992, 174(16): 5284-5294.

[90]

King GM. Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl Environ Microbiol, 2003, 69(12): 7257-7265.

[91]

King GM. Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by mycobacteria. Appl Environ Microbiol, 2003, 69(12): 7266-7272.

[92]

King GM. Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria. FEMS Microbiol Ecol, 2006, 56(1): 1-7.

[93]

King GM, Weber CF. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol, 2007, 5(2): 107-118.

[94]

Kluyver A, Schnellen CG. On the fermentation of carbon monoxide by pure cultures of methane bacteria. Arch Biochem, 1947, 14(1–2): 57-70.

[95]

Kraut M, Hugendieck I, Herwig S, Meyer O. Homology and distribution of CO dehydrogenase structural genes in carboxydotrophic bacteria. Arch Microbiol, 1989, 152(4): 335-341.

[96]

Krüger B, Meyer O. Thermophilic Bacilli growing with carbon monoxide. Arch Microbiol, 1984, 139(4): 402-408.

[97]

Lazarus O, Woolerton TW, Parkin A, . Water-gas shift reaction catalyzed by redox enzymes on conducting graphite platelets. J Am Chem Soc, 2009, 131(40): 14154-14155.

[98]

Léger C, Elliott SJ, Hoke KR, Jeuken LJ, Jones AK, Armstrong FA. Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms. Biochem, 2003, 42(29): 8653-8662.

[99]

Lemaire ON, Jespersen M, Wagner T. CO2-fixation strategies in energy extremophiles: what can we learn from acetogens?. Front Microbiol, 2020, 11: 486.

[100]

Liew FE, Nogle R, Abdalla T, . Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat Biotechnol, 2022, 40(3): 335-344.

[101]

Lindahl PA. The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel?. Biochem, 2002, 41(7): 2097-2105.

[102]

Liu Y, Jiang H. Directed evolution of Propionyl-CoA carboxylase for succinate biosynthesis. Trends Biotechnol, 2021, 39(4): 330-331.

[103]

Ljungdahl LG. Drake HL. The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. Acetogenesis, 1994, Boston: Springer, 63-87.

[104]

Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems, 2018

[105]

Lupton FS, Conrad R, Zeikus JG. CO metabolism of Desulfovibrio vulgaris strain Madison: physiological function in the absence or presence of exogeneous substrates. FEMS Microbiol Lett, 1984, 23(2–3): 263-268.

[106]

Lynd L, Kerby R, Zeikus JG. Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol, 1982, 149(1): 255-263.

[107]

Lyu Z, Shao N, Akinyemi T, Whitman WB. Methanogenesis. Curr Biol, 2018, 28(13): R727-R732.

[108]

Mall A, Sobotta J, Huber C, . Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium. Science, 2018, 359(6375): 563-567.

[109]

Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc London, Ser B, 2007, 362(1486): 1887-1925.

[110]

Matsumoto T, Kabe R, Nonaka K, Ando T, Yoon KS, Nakai H, Ogo S. Model study of CO inhibition of [NiFe] hydrogenase. Inorg Chem, 2011, 50(18): 8902-8906.

[111]

Mattozzi M, Ziesack M, Voges MJ, Silver PA, Way JC. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: toward horizontal transfer of autotrophic growth. Metab Eng, 2013, 16: 130-139.

[112]

Merrouch M, Hadj-Said J, Domnik L, Dobbek H, Leger C, Dementin S, Fourmond V. O2 inhibition of Ni-containing CO dehydrogenase is partly reversible. Chem, 2015, 21(52): 18934-18938.

[113]

Meyer O, Gremer L, Ferner R, . The role of Se, Mo and Fe in the structure and function of carbon monoxide dehydrogenase. Biol Chem, 2000, 381(9–10): 865-876.

[114]

Meyer O, Jacobitz S, Krüger B. Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria. FEMS Microbiol Rev, 1986, 2(3): 161-179.

[115]

Meyer O, Schlegel HG. Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol, 1983, 37: 277-310.

[116]

Mock J, Zheng Y, Mueller AP, . Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol, 2015, 197(18): 2965-2980.

[117]

Mörsdorf G, Frunzke K, Gadkari D, Meyer O. Microbial growth on carbon monoxide. Biodegradation, 1992, 3(1): 61-82.

[118]

Müller V. Energy conservation in acetogenic bacteria. Appl Environ Microbiol, 2003, 69(11): 6345-6353.

[119]

Müller V, Imkamp F, Biegel E, Schmidt S, Dilling S. Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci, 2008, 1125: 137-146.

[120]

Nagoya M, Kouzuma A, Watanabe K. Codh/Acs-deficient methanogens are prevalent in anaerobic digesters. Microorganisms, 2021

[121]

Nunoura T, Chikaraishi Y, Izaki R, . A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science, 2018, 359(6375): 559-563.

[122]

O'Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol, 1984, 158(1): 373-375.

[123]

Oelgeschlager E, Rother M. Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol, 2008, 190(3): 257-269.

[124]

Page CC, Moser CC, Chen X, Dutton PL. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature, 1999, 402(6757): 47-52.

[125]

Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J Am Chem Soc, 2007, 129(34): 10328-10329.

[126]

Parshina SN, Kijlstra S, Henstra AM, Sipma J, Plugge CM, Stams AJ. Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans. Appl Microbiol Biotechnol, 2005, 68(3): 390-396.

[127]

Parshina SN, Sipma J, Henstra AM, Stams AJ. Carbon monoxide as an electron donor for the biological reduction of sulphate. Inter J Microbiol, 2010, 2010.

[128]

Parshina SN, Sipma J, Nakashimada Y, . Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Inter J Sys Evol Microbiol, 2005, 55(Pt 5): 2159-2165.

[129]

Peng W, Wang Y, Zhu X, Xu L, Zhao J, Cui Z, Cao H. Distribution characteristics and diversities of cbb and coxL genes in paddy soil profiles from southern China. Pedosphere, 2021, 31(6): 954-963.

[130]

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem, 2004, 25(13): 1605-1612.

[131]

Pugh LH, Umbreit WW. Anaerobic CO2 fixation by autotrophic bacteria, Hydrogenomonas and Ferrobacillus. Arch Biochem Biophys, 1966, 115(1): 122-128.

[132]

Rabus R, Hansen TA, Widdel F. Dworkin M, Falkow S, Rosenberg E, Schleider K-H, Stackebrandt E. Dissimilatory sulfate-and sulfur-reducing prokaryotes. The prokaryotes A Handbook on the Biology of Bacteria, 2006, 2, Berlin: Springer, 659-768.

[133]

Ragsdale SW. Life with carbon monoxide. Crit Rev Biochem Mol Biol, 2004, 39(3): 165-195.

[134]

Ragsdale SW. Enzymology of the wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci, 2008, 1125: 129-136.

[135]

Ragsdale SW, Kumar M. Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase(,). Chem Rev, 1996, 96(7): 2515-2540.

[136]

Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta, 2008, 1784(12): 1873-1898.

[137]

Reginald SS, Etzerodt M, Fapyane D, Chang IS. Functional expression of a Mo-Cu-dependent carbon monoxide dehydrogenase (CODH) and its use as a dissolved CO Bio-microsensor. ACS Sens, 2021, 6(7): 2772-2782.

[138]

Reginald SS, Lee H, Fazil N, . Control of carbon monoxide dehydrogenase orientation by site-specific immobilization enables direct electrical contact between enzyme cofactor and solid surface. Commun Biol, 2022, 5(1): 390.

[139]

Reginald SS, Lee YS, Lee H, Jang N, Chang IS. Electrocatalytic and biosensing properties of aerobic carbon monoxide dehydrogenase from Hydrogenophaga pseudoflava immobilized on Au electrode towards carbon monoxide oxidation. Electroanalysis, 2019, 31(9): 1635-1640.

[140]

Resch M, Dobbek H, Meyer O. Structural and functional reconstruction in situ of the [CuSMoO2] active site of carbon monoxide dehydrogenase from the carbon monoxide oxidizing eubacterium Oligotropha carboxidovorans. J Biol Inorg Chem, 2005, 10(5): 518-528.

[141]

Ribbe MW. Insights into the Mechanism of Carbon Monoxide Dehydrogenase at Atomic Resolution. Angew Chem Inter Ed, 2015, 54(29): 8337-8339.

[142]

Robb FT, Techtmann SM. Life on the fringe: microbial adaptation to growth on carbon monoxide. F1000 Res, 2018

[143]

Roberts GP, Thorsteinsson MV, Kerby RL, Lanzilotta WN, Poulos T. CooA: a heme-containing regulatory protein that serves as a specific sensor of both carbon monoxide and redox state. Prog Nucleic Acid Res Mol Biol, 2001, 67: 35-63.

[144]

Rudd JA. CO2 but not as you know it. Nat Chem, 2022, 14(3): 360-360.

[145]

Sanchez-Andrea I, Guedes IA, Hornung B, . The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun, 2020, 11(1): 5090.

[146]

Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res, 2023, 47: 75-92.

[147]

Schlager S, Dibenedetto A, Aresta M, Apaydin DH, Dumitru LM, Neugebauer H, Sariciftci NS. Biocatalytic and bioelectrocatalytic approaches for the reduction of carbon dioxide using enzymes. Energy Technol, 2017, 5(6): 812-821.

[148]

Schlager S, Fuchsbauer A, Haberbauer M, Neugebauer H, Sariciftci NS. Carbon dioxide conversion to synthetic fuels using biocatalytic electrodes. J Mater Chem, 2017, 5(6): 2429-2443.

[149]

Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature, 2017, 542(7641): 335-339.

[150]

Schoelmerich MC, Müller V. Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway. PNAS, 2019, 116(13): 6329-6334.

[151]

Schöne C, Rother M. Stams AJM, Sousa D. Methanogenesis from carbon monoxide. Biogenesis of hydrocarbons, 2018, Cham: Springer, 1-29.

[152]

Schwander T, Schada von Borzyskowski L, Burgener S, Cortina NS, Erb TJ. A synthetic pathway for the fixation of carbon dioxide in vitro. Science, 2016, 354(6314): 900-904.

[153]

Schwarz FM, Ciurus S, Jain S, Baum C, Wiechmann A, Basen M, Müller V. Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens, Acetobacterium woodii and Thermoanaerobacter kivui. Microb Biotechnol, 2020, 13(6): 2044-2056.

[154]

Seravalli J, Kumar M, Lu W-P, Ragsdale SW. Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions. Biochem, 1995, 34(24): 7879-7888.

[155]

Seravalli J, Ragsdale SW. Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochem, 2000, 39(6): 1274-1277.

[156]

Shi S, Meng Q, Qiao W, Zhao H. Establishing carbon dioxide-based third-generation biorefinery for a sustainable low-carbon economy. ACS Synth Biol, 2020, 1(1): 44-59.

[157]

Shin W, Lee SH, Shin JW, Lee SP, Kim Y. Highly selective electrocatalytic conversion of CO2 to CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica. J Am Chem Soc, 2003, 125(48): 14688-14689.

[158]

Siebert D, Eikmanns BJ, Blombach B. Exploiting aerobic carboxydotrophic bacteria for industrial biotechnology. Adv Biochem Eng Biotechnol, 2022, 180: 1-32.

[159]

Sim JH, Kamaruddin AH, Long WS, Najafpour G. Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enzyme Microb Technol, 2007, 40(5): 1234-1243.

[160]

Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol, 2011, 77(4): 1153-1161.

[161]

Singer SW, Hirst MB, Ludden PW. CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. Biochim Biophys Acta, 2006, 1757(12): 1582-1591.

[162]

Sinharoy A, Pakshirajan K, Lens PNL. Biological sulfate reduction using gaseous substrates to treat acid mine drainage. Curr Pollut Rep, 2020, 6(4): 328-344.

[163]

Sipma J, Henstra AM, Parshina SM, Lens PN, Lettinga G, Stams AJ. Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotechnol, 2006, 26(1): 41-65.

[164]

Song J, Kim Y, Lim M, Lee H, Lee JI, Shin W. Microbes as electrochemical CO2 conversion catalysts. Chemsuschem, 2011, 4(5): 587-590.

[165]

Song Y, Lee JS, Shin J, . Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei. PNAS, 2020, 117(13): 7516-7523.

[166]

Steffens L, Pettinato E, Steiner TM, Eisenreich W, Berg IA. Tracking the reversed oxidative tricarboxylic acid cycle in bacteria. Bio-Protoc, 2022, 12(6): e4364-e4364.

[167]

Steffens L, Pettinato E, Steiner TM, Mall A, König S, Eisenreich W, Berg IA. High CO2 levels drive the TCA cycle backwards towards autotrophy. Nature, 2021, 592(7856): 784-788.

[168]

Sultana S, Chandra Sahoo P, Martha S, Parida K. A review of harvesting clean fuels from enzymatic CO2 reduction. RSC Adv, 2016, 6(50): 44170-44194.

[169]

Svetlitchnyi V, Peschel C, Acker G, Meyer O. Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol, 2001, 183(17): 5134-5144.

[170]

Techtmann SM, Lebedinsky AV, Colman AS, Sokolova TG, Woyke T, Goodwin L, Robb FT. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases. Front Microbiol, 2012, 3: 132.

[171]

Thauer RK (1988) Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176(3):497–508. doi:https://doi.org/10.1111/j.1432-1033.1988.tb14307.x.

[172]

Tirado-Acevedo O, Chinn MS, Grunden AM. Production of biofuels from synthesis gas using microbial catalysts. Adv Appl Microbiol, 2010, 70: 57-92.

[173]

Turner APF, Aston WJ, Higgins IJ, Bell JM, Colby J, Davis G, Hill HAO. Carbon monoxide :acceptor oxidoreductase from Pseudomonas thermocarboxydovorans strain C2 and its use in a carbon monoxide sensor. Anal Chim Acta, 1984, 163: 161-174.

[174]

Viitasalo M, Bonsdorff E. Global climate change and the Baltic Sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning. Earth Syst Dyn, 2022, 13(2): 711-747.

[175]

Volbeda A, Fontecilla-Camps JC. Structural bases for the catalytic mechanism of Ni-containing carbon monoxide dehydrogenases. Dalton Trans, 2005, 21: 3443-3450.

[176]

Voordouw G. Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol, 2002, 184(21): 5903-5911.

[177]

Wang VC, Can M, Pierce E, Ragsdale SW, Armstrong FA. A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase. J Am Chem Soc, 2013, 135(6): 2198-2206.

[178]

Wang VC, Ragsdale SW, Armstrong FA. Investigations of two bidirectional carbon monoxide dehydrogenases from Carboxydothermus hydrogenoformans by protein film electrochemistry. ChemBioChem, 2013, 14(14): 1845-1851.

[179]

Wang VC, Ragsdale SW, Armstrong FA. Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases. Met Ions Life Sci, 2014, 14: 71-97.

[180]

Weber CF, King GM. Distribution and diversity of carbon monoxide-oxidizing bacteria and bulk bacterial communities across a succession gradient on a Hawaiian volcanic deposit. Environ Microbiol, 2010, 12(7): 1855-1867.

[181]

White DW, Esckilsen D, Lee SK, Ragsdale SW, Dyer RB. Efficient, light-driven reduction of CO(2) to CO by a carbon monoxide dehydrogenase-CdSe/CdS Nanorod photosystem. J Phys Chem Lett, 2022, 13(24): 5553-5556.

[182]

Wilcoxen J, Zhang B, Hille R. Reaction of the molybdenum- and copper-containing carbon monoxide dehydrogenase from Oligotropha carboxydovorans with quinones. Biochem, 2011, 50(11): 1910-1916.

[183]

Woolerton TW, Sheard S, Chaudhary YS, Armstrong FA. Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy Environ Sci, 2012, 5(6): 7470-7490.

[184]

Woolerton TW, Sheard S, Pierce E, Ragsdale SW, Armstrong FA. CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy Environ Sci, 2011, 4(7): 2393-2399.

[185]

Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA. Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light. J Am Chem Soc, 2010, 132(7): 2132-2133.

[186]

Wu M, Ren Q, Durkin AS, . Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. Plos Genet, 2005, 1(5

[187]

Xavier JC, Preiner M, Martin WF. Something special about CO-dependent CO(2) fixation. FEBS J, 2018, 285(22): 4181-4195.

[188]

Zavarzin GA, Nozhevnikova AN. Aerobic carboxydobacteria. Microb Ecol, 1977, 3(4): 305-326.

[189]

Zhang L, Can M, Ragsdale SW, Armstrong FA. Fast and selective photoreduction of CO(2) to CO catalyzed by a complex of carbon monoxide dehydrogenase, TiO(2), and Ag nanoclusters. ACS Catal, 2018, 8(4): 2789-2795.

Funding

Projekt DEAL

Bundesministerium für Bildung und Forschung(031B0870A)

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/