Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications

Rebecca Bährle, Stefanie Böhnke, Jonas Englhard, Julien Bachmann, Mirjam Perner

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 84.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 84. DOI: 10.1186/s40643-023-00705-9
Review

Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications

Author information +
History +

Abstract

Anthropogenic carbon dioxide (CO2) levels are rising to alarming concentrations in earth’s atmosphere, causing adverse effects and global climate changes. In the last century, innovative research on CO2 reduction using chemical, photochemical, electrochemical and enzymatic approaches has been addressed. In particular, natural CO2 conversion serves as a model for many processes and extensive studies on microbes and enzymes regarding redox reactions involving CO2 have already been conducted. In this review we focus on the enzymatic conversion of CO2 to carbon monoxide (CO) as the chemical conversion downstream of CO production render CO particularly attractive as a key intermediate. We briefly discuss the different currently known natural autotrophic CO2 fixation pathways, focusing on the reversible reaction of CO2, two electrons and protons to CO and water, catalyzed by carbon monoxide dehydrogenases (CODHs). We then move on to classify the different type of CODHs, involved catalyzed chemical reactions and coupled metabolisms. Finally, we discuss applications of CODH enzymes in photochemical and electrochemical cells to harness CO2 from the environment transforming it into commodity chemicals.

Keywords

CO2 fixing microorganisms / Carbon monoxide dehydrogenase (CODH) / CO2 reduction / Electrocatalysis / Biocatalysts

Cite this article

Download citation ▾
Rebecca Bährle, Stefanie Böhnke, Jonas Englhard, Julien Bachmann, Mirjam Perner. Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications. Bioresources and Bioprocessing, 2023, 10(1): 84 https://doi.org/10.1186/s40643-023-00705-9

References

Adam N, Perner M. Novel hydrogenases from deep-sea hydrothermal vent metagenomes identified by a recently developed activity-based screen. ISME J, 2018, 12(5): 1225-1236.
CrossRef Google scholar
Adam PS, Borrel G, Gribaldo S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. PNAS, 2018, 115(6): E1166-E1173.
CrossRef Google scholar
Aduhene AG, Cui H, Yang H, Liu C, Sui G, Liu C. Poly (3-hydroxypropionate): Biosynthesis Pathways and Malonyl-CoA Biosensor Material Properties. Front Bioeng Biotechnol, 2021, 9.
CrossRef Google scholar
Akash S, Sivaprakash B, Rajamohan N, Vo D-VN. Biotechnology to convert carbon dioxide into biogas, bioethanol, bioplastic and succinic acid using algae, bacteria and yeast: a review. Environ Chem Lett, 2023, 21(3): 1477-1497.
CrossRef Google scholar
Alfano M, Cavazza C. The biologically mediated water–gas shift reaction: structure, function and biosynthesis of monofunctional [NiFe]-carbon monoxide dehydrogenases. Sustain Energy Fuels, 2018, 2(8): 1653-1670.
CrossRef Google scholar
Alves JI, Visser M, Arantes AL, . Effect of sulfate on carbon monoxide conversion by a thermophilic syngas-fermenting culture dominated by a desulfofundulus species. Front Microbiol, 2020, 11.
CrossRef Google scholar
Amao Y, Ikeyama S. Discovery of the reduced form of methylviologen activating formate dehydrogenase in the catalytic conversion of carbon dioxide to formic acid. Chem Lett, 2015, 44(9): 1182-1184.
CrossRef Google scholar
Anand A, Satyanarayana T. Applicability of carboxydotrophic bacterial carbon monoxide dehydrogenase (CODH) in carbon sequestration and bioenergy generation. J Sci Ind Res, 2012, 71: 381-384.
Appel AM, Bercaw JE, Bocarsly AB, . Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev, 2013, 113(8): 6621-6658.
CrossRef Google scholar
Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. J Exp Bot, 2012, 63(6): 2325-2342.
CrossRef Google scholar
Bassham JA, Calvin M. The way of CO2 in plant photosynthesis. Comp Biochem Physiol A, 1962, 4: 187-204.
CrossRef Google scholar
Bates NR, Johnson RJ. Acceleration of ocean warming, salinification, deoxygenation and acidification in the surface subtropical North Atlantic Ocean. Commun Earth Environ, 2020, 1(1): 33.
CrossRef Google scholar
Becker JM, Lielpetere A, Szczesny J, . Bioelectrocatalytic CO(2) reduction by redox polymer-wired carbon monoxide dehydrogenase gas diffusion electrodes. ACS Appl Mater Interfaces, 2022, 14(41): 46421-46426.
CrossRef Google scholar
Bender G, Ragsdale SW. Evidence that ferredoxin interfaces with an internal redox shuttle in Acetyl-CoA synthase during reductive activation and catalysis. Biochem, 2011, 50(2): 276-286.
CrossRef Google scholar
Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol, 2011, 77(6): 1925-1936.
CrossRef Google scholar
Berg IA, Kockelkorn D, Buckel W, Fuchs G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science, 2007, 318(5857): 1782-1786.
CrossRef Google scholar
Bertsch J, Müller V. CO Metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol, 2015, 81(17): 5949-5956.
CrossRef Google scholar
Biegel E, Müller V. Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. PNAS, 2010, 107(42): 18138-18142.
CrossRef Google scholar
Biegel E, Schmidt S, Gonzalez JM, Müller V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci, 2011, 68(4): 613-634.
CrossRef Google scholar
Bierbaumer S, Nattermann M, Schulz L, . Enzymatic conversion of CO(2): from natural to artificial utilization. Chem Rev, 2023, 123(9): 5702-5754.
CrossRef Google scholar
Biester A, Dementin S, Drennan CL. Visualizing the gas channel of a monofunctional carbon monoxide dehydrogenase. J Inorg Biochem, 2022, 230.
CrossRef Google scholar
Blatti JL, Michaud J, Burkart MD. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol, 2013, 17(3): 496-505.
CrossRef Google scholar
Boer JL, Mulrooney SB, Hausinger RP. Nickel-dependent metalloenzymes. Arch Biochem Biophys, 2014, 544: 142-152.
CrossRef Google scholar
Böhnke S, Perner M. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity. ISME J, 2015, 9(3): 735-745.
CrossRef Google scholar
Böhnke S, Perner M. Unraveling RubisCO form I and form II regulation in an uncultured organism from a deep-sea hydrothermal vent via metagenomic and mutagenesis studies. Front Microbiol, 2017, 8: 1303.
CrossRef Google scholar
Böhnke S, Perner M. Approaches to unmask functioning of the uncultured microbial majority from extreme habitats on the seafloor. Front Microbiol, 2022, 13.
CrossRef Google scholar
Bonam D, Murrell SA, Ludden PW. Carbon monoxide dehydrogenase from Rhodospirillum rubrum. J Bacteriol, 1984, 159(2): 693-699.
CrossRef Google scholar
Brauko KM, Cabral A, Costa NV, . Marine heatwaves, sewage and eutrophication combine to trigger deoxygenation and biodiversity loss: A SW Atlantic case study. Front Mar Sci, 2020
CrossRef Google scholar
Buchanan BB, Arnon DI. A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res, 1990, 24: 47-53.
CrossRef Google scholar
Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA. Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem Commun, 2012, 48(1): 58-60.
CrossRef Google scholar
Claassens NJ. Reductive glycine pathway: a versatile route for one-carbon biotech. Trends Biotechnol, 2021, 39(4): 327-329.
CrossRef Google scholar
Contaldo U, Curtil M, Perard J, Cavazza C, Le Goff A. A Pyrene-Triazacyclononane Anchor Affords High Operational Stability for CO(2) RR by a CNT-Supported Histidine-Tagged CODH. Angew Chem Inter Ed, 2022, 61(21
CrossRef Google scholar
Contaldo U, Guigliarelli B, Perard J, Rinaldi C, Le Goff A, Cavazza C. Efficient Electrochemical CO2/CO interconversion by an engineered carbon monoxide dehydrogenase on a gas-diffusion carbon nanotube-based bioelectrode. ACS Catal, 2021, 11(9): 5808-5817.
CrossRef Google scholar
Cordero PRF, Bayly K, Man Leung P, . Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J, 2019, 13(11): 2868-2881.
CrossRef Google scholar
Datta S, Christena LR, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. Biotech, 2013, 3(1): 1-9.
CrossRef Google scholar
David AE, Yang AJ, Wang NS. Minteer SD. Enzyme stabilization and immobilization by sol-gel entrapment. Enzyme stabilization and immobilization: methods and protocols, 2011, Totowa, NJ: Humana Press, 49-66.
CrossRef Google scholar
Diekert GB, Thauer RK. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol, 1978, 136(2): 597-606.
CrossRef Google scholar
Diender M, Stams AJ, Sousa DZ. Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol, 2015, 6: 1275.
CrossRef Google scholar
Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O. Catalysis at a dinuclear [CuSMo(O)OH] cluster in a CO dehydrogenase resolved at 1.1–A resolution. PNAS, 2002, 99(25): 15971-15976.
CrossRef Google scholar
Dobbek H, Gremer L, Meyer O, Huber R. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. PNAS, 1999, 96(16): 8884-8889.
CrossRef Google scholar
Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL. A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science, 2002, 298(5593): 567-572.
CrossRef Google scholar
Drake HL. Drake HL. Acetogenesis, acetogenic bacteria, and the acetyl-coa “wood/ljungdahl” pathway: past and current perspectives. Acetogenesis, 1994, Boston: Springer, 3-60.
CrossRef Google scholar
Drake HL, Kusel K, Matthies C. Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie Van Leeuwenhoek, 2002, 81(1–4): 203-213.
CrossRef Google scholar
Drennan CL, Heo J, Sintchak MD, Schreiter E, Ludden PW. Life on carbon monoxide: x-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. PNAS, 2001, 98(21): 11973-11978.
CrossRef Google scholar
Ensign SA, Ludden PW. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. J Biol Chem, 1991, 266(27): 18395-18403.
CrossRef Google scholar
Erb TJ. Carboxylases in natural and synthetic microbial pathways. Appl Environ Microbiol, 2011, 77(24): 8466-8477.
CrossRef Google scholar
Fawzy S, Osman AI, Doran J, Rooney DW. Strategies for mitigation of climate change: a review. Environ Chem Lett, 2020, 18(6): 2069-2094.
CrossRef Google scholar
Ferry JG. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev, 1999, 23(1): 13-38.
CrossRef Google scholar
Ferry JG. Biochemistry of acetotrophic methanogenesis, 2010, Heidelberg: Springer, 357-367.
Fesseler J, Jeoung JH, Dobbek H. How the [NiFe4S4] cluster of CO dehydrogenase activates CO2 and NCO(-). Angew Chem Inter Ed, 2015, 54(29): 8560-8564.
CrossRef Google scholar
Fischer R, Thauer RK. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett, 1990, 269(2): 368-372.
CrossRef Google scholar
Fox-Kemper B. Ocean, cryosphere and sea level change, 2021, New Orleans: AGU Fall Meeting Abstracts.
Fox JD, He Y, Shelver D, Roberts GP, Ludden PW. Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J Bacteriol, 1996, 178(21): 6200-6208.
CrossRef Google scholar
Fox JD, Kerby RL, Roberts GP, Ludden PW. Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J Bacteriol, 1996, 178(6): 1515-1524.
CrossRef Google scholar
Freire R, Pessoa C, Kubota L. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity. J Braz Chem Soc, 2003, 14(2): 230-243.
CrossRef Google scholar
Friedlingstein P, Jones MW, O'Sullivan M, . Global carbon budget 2021. Earth Syst Sci Data, 2022, 14(4): 1917-2005.
CrossRef Google scholar
Frunzke K, Meyer O. Nitrate respiration, denitrification, and utilization of nitrogen sources by aerobic carbon monoxide-oxidizing bacteria. Arch Microbiol, 1990, 154(2): 168-174.
CrossRef Google scholar
Fuchs G. Drake HL. Variations of the acetyl-CoA pathway in diversely related microorganisms that are not acetogens. Acetogenesis, 1994, Boston: Springer, 507-520.
CrossRef Google scholar
Fuhrmann JJ. Gentry TJ, Fuhrmann JJ, Zuberer DA. Microbial metabolism. Principles and applications of soil microbiology, 2021, 3, Amsterdam: Elsevier, 57-87.
CrossRef Google scholar
Fujimori S, Inoue S. Carbon monoxide in main-group chemistry. J Am Chem Soc, 2022, 144(5): 2034-2050.
CrossRef Google scholar
Fukuyama Y, Inoue M, Omae K, Yoshida T, Sako Y. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: versatile microbial conversion of a toxic gas into an available energy. Adv Appl Microbiol, 2020, 110: 99-148.
CrossRef Google scholar
Grahame DA, DeMoll E. Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochem, 1995, 34(14): 4617-4624.
CrossRef Google scholar
Grahame DA, Gencic S, DeMoll E. A single operon-encoded form of the acetyl-CoA decarbonylase/synthase multienzyme complex responsible for synthesis and cleavage of acetyl-CoA in Methanosarcina thermophila. Arch Microbiol, 2005, 184(1): 32-40.
CrossRef Google scholar
Hayer-Hartl M, Hartl FU. Chaperone machineries of rubisco–the most abundant enzyme. Trends Biochem Sci, 2020, 45(9): 748-763.
CrossRef Google scholar
Hedderich R, Forzi L. Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol, 2005, 10(2–4): 92-104.
CrossRef Google scholar
Henson SA, Beaulieu C, Ilyina T, . Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat Commun, 2017, 8: 14682.
CrossRef Google scholar
Henstra AM, Stams AJ. Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol, 2004, 70(12): 7236-7240.
CrossRef Google scholar
Henstra AM, Stams AJM. Deep conversion of carbon monoxide to hydrogen and formation of acetate by the anaerobic thermophile Carboxydothermus hydrogenoformans. Inter J Microbiol, 2011, 2011.
CrossRef Google scholar
Hess V, Schuchmann K, Müller V. The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem, 2013, 288(44): 31496-31502.
CrossRef Google scholar
Hille R, Dingwall S, Wilcoxen J. The aerobic CO dehydrogenase from Oligotropha carboxidovorans. J Biol Inorg Chem, 2015, 20(2): 243-251.
CrossRef Google scholar
Hocking WP, Roalkvam I, Magnussen C, Stokke R, Steen IH. Assessment of the carbon monoxide metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus VC-16 by comparative transcriptome analyses. Archaea, 2015, 2015.
CrossRef Google scholar
Hoeben FJM, Heller I, Albracht SPJ, Dekker C, Lemay SG, Heering HA. Polymyxin-coated Au and carbon nanotube electrodes for stable [NiFe]-hydrogenase film voltammetry. Langmuir, 2008, 24(11): 5925-5931.
CrossRef Google scholar
Hoshino T, Inagaki F. Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments. Lett Appl Microbiol, 2017, 64(5): 355-363.
CrossRef Google scholar
Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB. 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol, 2000, 66(4): 1474-1478.
CrossRef Google scholar
Huber H, Gallenberger M, Jahn U, . A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. PNAS, 2008, 105(22): 7851-7856.
CrossRef Google scholar
Hügler M, Sievert SM. Beyond the calvin cycle: autotrophic carbon fixation in the Ocean. Annu Rev Mar Sci, 2011, 3(1): 261-289.
CrossRef Google scholar
Ikeyama S, Amao Y. Novel artificial coenzyme based on the viologen derivative for CO2 reduction biocatalyst formate dehydrogenase. Chem Lett, 2016, 45(11): 1259-1261.
CrossRef Google scholar
Inoue M, Nakamoto I, Omae K, Oguro T, Ogata H, Yoshida T, Sako Y. Structural and phylogenetic diversity of anaerobic carbon-monoxide dehydrogenases. Front Microbiol, 2018, 9: 3353.
CrossRef Google scholar
Inoue M, Omae K, Nakamoto I, Kamikawa R, Yoshida T, Sako Y. Biome-specific distribution of Ni-containing carbon monoxide dehydrogenases. Extremophiles, 2022, 26(1): 9.
CrossRef Google scholar
Islam ZF, Cordero PRF, Feng J, . Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J, 2019, 13(7): 1801-1813.
CrossRef Google scholar
Jacobitz S, Meyer O. Removal of CO dehydrogenase from Pseudomonas carboxydovorans cytoplasmic membranes, rebinding of CO dehydrogenase to depleted membranes, and restoration of respiratory activities. J Bacteriol, 1989, 171(11): 6294-6299.
CrossRef Google scholar
Jeoung JH, Dobbek H. Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science, 2007, 318(5855): 1461-1464.
CrossRef Google scholar
Jeoung JH, Fesseler J, Goetzl S, Dobbek H. Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases. Met Ions Life Sci, 2014, 14: 37-69.
CrossRef Google scholar
Jeoung JH, Martins BM, Dobbek H. Carbon monoxide dehydrogenases. Methods Mol Biol, 2019, 1876: 37-54.
CrossRef Google scholar
Jin P, Gao K. Häder D-P, Helbling EW, Villafañe VE. Effects of ocean acidification on marine primary producers and related ecological processes under multiple stressors. Anthropogenic pollution of aquatic ecosystems, 2021, Cham: Springer, 401-426.
CrossRef Google scholar
Jones SW, Fast AG, Carlson ED, . CO(2) fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun, 2016, 7: 12800.
CrossRef Google scholar
Kajla S, Kumari R, Nagi GK. Microbial CO(2) fixation and biotechnology in reducing industrial CO(2) emissions. Arch Microbiol, 2022, 204(2): 149.
CrossRef Google scholar
Kennedy J, Marchesi JR, Dobson AD. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol, 2007, 75(1): 11-20.
CrossRef Google scholar
Kerby RL, Hong SS, Ensign SA, Coppoc LJ, Ludden PW, Roberts GP. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J Bacteriol, 1992, 174(16): 5284-5294.
CrossRef Google scholar
King GM. Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl Environ Microbiol, 2003, 69(12): 7257-7265.
CrossRef Google scholar
King GM. Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by mycobacteria. Appl Environ Microbiol, 2003, 69(12): 7266-7272.
CrossRef Google scholar
King GM. Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria. FEMS Microbiol Ecol, 2006, 56(1): 1-7.
CrossRef Google scholar
King GM, Weber CF. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol, 2007, 5(2): 107-118.
CrossRef Google scholar
Kluyver A, Schnellen CG. On the fermentation of carbon monoxide by pure cultures of methane bacteria. Arch Biochem, 1947, 14(1–2): 57-70.
Kraut M, Hugendieck I, Herwig S, Meyer O. Homology and distribution of CO dehydrogenase structural genes in carboxydotrophic bacteria. Arch Microbiol, 1989, 152(4): 335-341.
CrossRef Google scholar
Krüger B, Meyer O. Thermophilic Bacilli growing with carbon monoxide. Arch Microbiol, 1984, 139(4): 402-408.
CrossRef Google scholar
Lazarus O, Woolerton TW, Parkin A, . Water-gas shift reaction catalyzed by redox enzymes on conducting graphite platelets. J Am Chem Soc, 2009, 131(40): 14154-14155.
CrossRef Google scholar
Léger C, Elliott SJ, Hoke KR, Jeuken LJ, Jones AK, Armstrong FA. Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms. Biochem, 2003, 42(29): 8653-8662.
CrossRef Google scholar
Lemaire ON, Jespersen M, Wagner T. CO2-fixation strategies in energy extremophiles: what can we learn from acetogens?. Front Microbiol, 2020, 11: 486.
CrossRef Google scholar
Liew FE, Nogle R, Abdalla T, . Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat Biotechnol, 2022, 40(3): 335-344.
CrossRef Google scholar
Lindahl PA. The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel?. Biochem, 2002, 41(7): 2097-2105.
CrossRef Google scholar
Liu Y, Jiang H. Directed evolution of Propionyl-CoA carboxylase for succinate biosynthesis. Trends Biotechnol, 2021, 39(4): 330-331.
CrossRef Google scholar
Ljungdahl LG. Drake HL. The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. Acetogenesis, 1994, Boston: Springer, 63-87.
CrossRef Google scholar
Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems, 2018
CrossRef Google scholar
Lupton FS, Conrad R, Zeikus JG. CO metabolism of Desulfovibrio vulgaris strain Madison: physiological function in the absence or presence of exogeneous substrates. FEMS Microbiol Lett, 1984, 23(2–3): 263-268.
CrossRef Google scholar
Lynd L, Kerby R, Zeikus JG. Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol, 1982, 149(1): 255-263.
CrossRef Google scholar
Lyu Z, Shao N, Akinyemi T, Whitman WB. Methanogenesis. Curr Biol, 2018, 28(13): R727-R732.
CrossRef Google scholar
Mall A, Sobotta J, Huber C, . Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium. Science, 2018, 359(6375): 563-567.
CrossRef Google scholar
Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc London, Ser B, 2007, 362(1486): 1887-1925.
CrossRef Google scholar
Matsumoto T, Kabe R, Nonaka K, Ando T, Yoon KS, Nakai H, Ogo S. Model study of CO inhibition of [NiFe] hydrogenase. Inorg Chem, 2011, 50(18): 8902-8906.
CrossRef Google scholar
Mattozzi M, Ziesack M, Voges MJ, Silver PA, Way JC. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: toward horizontal transfer of autotrophic growth. Metab Eng, 2013, 16: 130-139.
CrossRef Google scholar
Merrouch M, Hadj-Said J, Domnik L, Dobbek H, Leger C, Dementin S, Fourmond V. O2 inhibition of Ni-containing CO dehydrogenase is partly reversible. Chem, 2015, 21(52): 18934-18938.
CrossRef Google scholar
Meyer O, Gremer L, Ferner R, . The role of Se, Mo and Fe in the structure and function of carbon monoxide dehydrogenase. Biol Chem, 2000, 381(9–10): 865-876.
CrossRef Google scholar
Meyer O, Jacobitz S, Krüger B. Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria. FEMS Microbiol Rev, 1986, 2(3): 161-179.
CrossRef Google scholar
Meyer O, Schlegel HG. Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol, 1983, 37: 277-310.
CrossRef Google scholar
Mock J, Zheng Y, Mueller AP, . Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol, 2015, 197(18): 2965-2980.
CrossRef Google scholar
Mörsdorf G, Frunzke K, Gadkari D, Meyer O. Microbial growth on carbon monoxide. Biodegradation, 1992, 3(1): 61-82.
CrossRef Google scholar
Müller V. Energy conservation in acetogenic bacteria. Appl Environ Microbiol, 2003, 69(11): 6345-6353.
CrossRef Google scholar
Müller V, Imkamp F, Biegel E, Schmidt S, Dilling S. Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci, 2008, 1125: 137-146.
CrossRef Google scholar
Nagoya M, Kouzuma A, Watanabe K. Codh/Acs-deficient methanogens are prevalent in anaerobic digesters. Microorganisms, 2021
CrossRef Google scholar
Nunoura T, Chikaraishi Y, Izaki R, . A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science, 2018, 359(6375): 559-563.
CrossRef Google scholar
O'Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol, 1984, 158(1): 373-375.
CrossRef Google scholar
Oelgeschlager E, Rother M. Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol, 2008, 190(3): 257-269.
CrossRef Google scholar
Page CC, Moser CC, Chen X, Dutton PL. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature, 1999, 402(6757): 47-52.
CrossRef Google scholar
Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J Am Chem Soc, 2007, 129(34): 10328-10329.
CrossRef Google scholar
Parshina SN, Kijlstra S, Henstra AM, Sipma J, Plugge CM, Stams AJ. Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans. Appl Microbiol Biotechnol, 2005, 68(3): 390-396.
CrossRef Google scholar
Parshina SN, Sipma J, Henstra AM, Stams AJ. Carbon monoxide as an electron donor for the biological reduction of sulphate. Inter J Microbiol, 2010, 2010.
CrossRef Google scholar
Parshina SN, Sipma J, Nakashimada Y, . Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Inter J Sys Evol Microbiol, 2005, 55(Pt 5): 2159-2165.
CrossRef Google scholar
Peng W, Wang Y, Zhu X, Xu L, Zhao J, Cui Z, Cao H. Distribution characteristics and diversities of cbb and coxL genes in paddy soil profiles from southern China. Pedosphere, 2021, 31(6): 954-963.
CrossRef Google scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem, 2004, 25(13): 1605-1612.
CrossRef Google scholar
Pugh LH, Umbreit WW. Anaerobic CO2 fixation by autotrophic bacteria, Hydrogenomonas and Ferrobacillus. Arch Biochem Biophys, 1966, 115(1): 122-128.
CrossRef Google scholar
Rabus R, Hansen TA, Widdel F. Dworkin M, Falkow S, Rosenberg E, Schleider K-H, Stackebrandt E. Dissimilatory sulfate-and sulfur-reducing prokaryotes. The prokaryotes A Handbook on the Biology of Bacteria, 2006, 2, Berlin: Springer, 659-768.
Ragsdale SW. Life with carbon monoxide. Crit Rev Biochem Mol Biol, 2004, 39(3): 165-195.
CrossRef Google scholar
Ragsdale SW. Enzymology of the wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci, 2008, 1125: 129-136.
CrossRef Google scholar
Ragsdale SW, Kumar M. Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase(,). Chem Rev, 1996, 96(7): 2515-2540.
CrossRef Google scholar
Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta, 2008, 1784(12): 1873-1898.
CrossRef Google scholar
Reginald SS, Etzerodt M, Fapyane D, Chang IS. Functional expression of a Mo-Cu-dependent carbon monoxide dehydrogenase (CODH) and its use as a dissolved CO Bio-microsensor. ACS Sens, 2021, 6(7): 2772-2782.
CrossRef Google scholar
Reginald SS, Lee H, Fazil N, . Control of carbon monoxide dehydrogenase orientation by site-specific immobilization enables direct electrical contact between enzyme cofactor and solid surface. Commun Biol, 2022, 5(1): 390.
CrossRef Google scholar
Reginald SS, Lee YS, Lee H, Jang N, Chang IS. Electrocatalytic and biosensing properties of aerobic carbon monoxide dehydrogenase from Hydrogenophaga pseudoflava immobilized on Au electrode towards carbon monoxide oxidation. Electroanalysis, 2019, 31(9): 1635-1640.
CrossRef Google scholar
Resch M, Dobbek H, Meyer O. Structural and functional reconstruction in situ of the [CuSMoO2] active site of carbon monoxide dehydrogenase from the carbon monoxide oxidizing eubacterium Oligotropha carboxidovorans. J Biol Inorg Chem, 2005, 10(5): 518-528.
CrossRef Google scholar
Ribbe MW. Insights into the Mechanism of Carbon Monoxide Dehydrogenase at Atomic Resolution. Angew Chem Inter Ed, 2015, 54(29): 8337-8339.
CrossRef Google scholar
Robb FT, Techtmann SM. Life on the fringe: microbial adaptation to growth on carbon monoxide. F1000 Res, 2018
CrossRef Google scholar
Roberts GP, Thorsteinsson MV, Kerby RL, Lanzilotta WN, Poulos T. CooA: a heme-containing regulatory protein that serves as a specific sensor of both carbon monoxide and redox state. Prog Nucleic Acid Res Mol Biol, 2001, 67: 35-63.
CrossRef Google scholar
Rudd JA. CO2 but not as you know it. Nat Chem, 2022, 14(3): 360-360.
CrossRef Google scholar
Sanchez-Andrea I, Guedes IA, Hornung B, . The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun, 2020, 11(1): 5090.
CrossRef Google scholar
Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res, 2023, 47: 75-92.
CrossRef Google scholar
Schlager S, Dibenedetto A, Aresta M, Apaydin DH, Dumitru LM, Neugebauer H, Sariciftci NS. Biocatalytic and bioelectrocatalytic approaches for the reduction of carbon dioxide using enzymes. Energy Technol, 2017, 5(6): 812-821.
CrossRef Google scholar
Schlager S, Fuchsbauer A, Haberbauer M, Neugebauer H, Sariciftci NS. Carbon dioxide conversion to synthetic fuels using biocatalytic electrodes. J Mater Chem, 2017, 5(6): 2429-2443.
CrossRef Google scholar
Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature, 2017, 542(7641): 335-339.
CrossRef Google scholar
Schoelmerich MC, Müller V. Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway. PNAS, 2019, 116(13): 6329-6334.
CrossRef Google scholar
Schöne C, Rother M. Stams AJM, Sousa D. Methanogenesis from carbon monoxide. Biogenesis of hydrocarbons, 2018, Cham: Springer, 1-29.
Schwander T, Schada von Borzyskowski L, Burgener S, Cortina NS, Erb TJ. A synthetic pathway for the fixation of carbon dioxide in vitro. Science, 2016, 354(6314): 900-904.
CrossRef Google scholar
Schwarz FM, Ciurus S, Jain S, Baum C, Wiechmann A, Basen M, Müller V. Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens, Acetobacterium woodii and Thermoanaerobacter kivui. Microb Biotechnol, 2020, 13(6): 2044-2056.
CrossRef Google scholar
Seravalli J, Kumar M, Lu W-P, Ragsdale SW. Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions. Biochem, 1995, 34(24): 7879-7888.
CrossRef Google scholar
Seravalli J, Ragsdale SW. Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochem, 2000, 39(6): 1274-1277.
CrossRef Google scholar
Shi S, Meng Q, Qiao W, Zhao H. Establishing carbon dioxide-based third-generation biorefinery for a sustainable low-carbon economy. ACS Synth Biol, 2020, 1(1): 44-59.
CrossRef Google scholar
Shin W, Lee SH, Shin JW, Lee SP, Kim Y. Highly selective electrocatalytic conversion of CO2 to CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica. J Am Chem Soc, 2003, 125(48): 14688-14689.
CrossRef Google scholar
Siebert D, Eikmanns BJ, Blombach B. Exploiting aerobic carboxydotrophic bacteria for industrial biotechnology. Adv Biochem Eng Biotechnol, 2022, 180: 1-32.
CrossRef Google scholar
Sim JH, Kamaruddin AH, Long WS, Najafpour G. Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enzyme Microb Technol, 2007, 40(5): 1234-1243.
CrossRef Google scholar
Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol, 2011, 77(4): 1153-1161.
CrossRef Google scholar
Singer SW, Hirst MB, Ludden PW. CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. Biochim Biophys Acta, 2006, 1757(12): 1582-1591.
CrossRef Google scholar
Sinharoy A, Pakshirajan K, Lens PNL. Biological sulfate reduction using gaseous substrates to treat acid mine drainage. Curr Pollut Rep, 2020, 6(4): 328-344.
CrossRef Google scholar
Sipma J, Henstra AM, Parshina SM, Lens PN, Lettinga G, Stams AJ. Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization. Crit Rev Biotechnol, 2006, 26(1): 41-65.
CrossRef Google scholar
Song J, Kim Y, Lim M, Lee H, Lee JI, Shin W. Microbes as electrochemical CO2 conversion catalysts. Chemsuschem, 2011, 4(5): 587-590.
CrossRef Google scholar
Song Y, Lee JS, Shin J, . Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei. PNAS, 2020, 117(13): 7516-7523.
CrossRef Google scholar
Steffens L, Pettinato E, Steiner TM, Eisenreich W, Berg IA. Tracking the reversed oxidative tricarboxylic acid cycle in bacteria. Bio-Protoc, 2022, 12(6): e4364-e4364.
CrossRef Google scholar
Steffens L, Pettinato E, Steiner TM, Mall A, König S, Eisenreich W, Berg IA. High CO2 levels drive the TCA cycle backwards towards autotrophy. Nature, 2021, 592(7856): 784-788.
CrossRef Google scholar
Sultana S, Chandra Sahoo P, Martha S, Parida K. A review of harvesting clean fuels from enzymatic CO2 reduction. RSC Adv, 2016, 6(50): 44170-44194.
CrossRef Google scholar
Svetlitchnyi V, Peschel C, Acker G, Meyer O. Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol, 2001, 183(17): 5134-5144.
CrossRef Google scholar
Techtmann SM, Lebedinsky AV, Colman AS, Sokolova TG, Woyke T, Goodwin L, Robb FT. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases. Front Microbiol, 2012, 3: 132.
CrossRef Google scholar
Thauer RK (1988) Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176(3):497–508. doi:https://doi.org/10.1111/j.1432-1033.1988.tb14307.x.
Tirado-Acevedo O, Chinn MS, Grunden AM. Production of biofuels from synthesis gas using microbial catalysts. Adv Appl Microbiol, 2010, 70: 57-92.
CrossRef Google scholar
Turner APF, Aston WJ, Higgins IJ, Bell JM, Colby J, Davis G, Hill HAO. Carbon monoxide :acceptor oxidoreductase from Pseudomonas thermocarboxydovorans strain C2 and its use in a carbon monoxide sensor. Anal Chim Acta, 1984, 163: 161-174.
CrossRef Google scholar
Viitasalo M, Bonsdorff E. Global climate change and the Baltic Sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning. Earth Syst Dyn, 2022, 13(2): 711-747.
CrossRef Google scholar
Volbeda A, Fontecilla-Camps JC. Structural bases for the catalytic mechanism of Ni-containing carbon monoxide dehydrogenases. Dalton Trans, 2005, 21: 3443-3450.
CrossRef Google scholar
Voordouw G. Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol, 2002, 184(21): 5903-5911.
CrossRef Google scholar
Wang VC, Can M, Pierce E, Ragsdale SW, Armstrong FA. A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase. J Am Chem Soc, 2013, 135(6): 2198-2206.
CrossRef Google scholar
Wang VC, Ragsdale SW, Armstrong FA. Investigations of two bidirectional carbon monoxide dehydrogenases from Carboxydothermus hydrogenoformans by protein film electrochemistry. ChemBioChem, 2013, 14(14): 1845-1851.
CrossRef Google scholar
Wang VC, Ragsdale SW, Armstrong FA. Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases. Met Ions Life Sci, 2014, 14: 71-97.
CrossRef Google scholar
Weber CF, King GM. Distribution and diversity of carbon monoxide-oxidizing bacteria and bulk bacterial communities across a succession gradient on a Hawaiian volcanic deposit. Environ Microbiol, 2010, 12(7): 1855-1867.
CrossRef Google scholar
White DW, Esckilsen D, Lee SK, Ragsdale SW, Dyer RB. Efficient, light-driven reduction of CO(2) to CO by a carbon monoxide dehydrogenase-CdSe/CdS Nanorod photosystem. J Phys Chem Lett, 2022, 13(24): 5553-5556.
CrossRef Google scholar
Wilcoxen J, Zhang B, Hille R. Reaction of the molybdenum- and copper-containing carbon monoxide dehydrogenase from Oligotropha carboxydovorans with quinones. Biochem, 2011, 50(11): 1910-1916.
CrossRef Google scholar
Woolerton TW, Sheard S, Chaudhary YS, Armstrong FA. Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy Environ Sci, 2012, 5(6): 7470-7490.
CrossRef Google scholar
Woolerton TW, Sheard S, Pierce E, Ragsdale SW, Armstrong FA. CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy Environ Sci, 2011, 4(7): 2393-2399.
CrossRef Google scholar
Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA. Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light. J Am Chem Soc, 2010, 132(7): 2132-2133.
CrossRef Google scholar
Wu M, Ren Q, Durkin AS, . Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. Plos Genet, 2005, 1(5
CrossRef Google scholar
Xavier JC, Preiner M, Martin WF. Something special about CO-dependent CO(2) fixation. FEBS J, 2018, 285(22): 4181-4195.
CrossRef Google scholar
Zavarzin GA, Nozhevnikova AN. Aerobic carboxydobacteria. Microb Ecol, 1977, 3(4): 305-326.
CrossRef Google scholar
Zhang L, Can M, Ragsdale SW, Armstrong FA. Fast and selective photoreduction of CO(2) to CO catalyzed by a complex of carbon monoxide dehydrogenase, TiO(2), and Ag nanoclusters. ACS Catal, 2018, 8(4): 2789-2795.
CrossRef Google scholar
Funding
Projekt DEAL; Bundesministerium für Bildung und Forschung(031B0870B)

18

Accesses

10

Citations

2

Altmetric

Detail

Sections
Recommended

/