Influence of light absorption rate on the astaxanthin production by the microalga Haematococcus pluvialis during nitrogen starvation

Khadija Samhat , Antoinette Kazbar , Hosni Takache , Ali Ismail , Jeremy Pruvost

Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 78

PDF
Bioresources and Bioprocessing ›› 2023, Vol. 10 ›› Issue (1) : 78 DOI: 10.1186/s40643-023-00700-0
Research

Influence of light absorption rate on the astaxanthin production by the microalga Haematococcus pluvialis during nitrogen starvation

Author information +
History +
PDF

Abstract

Large amounts of astaxanthin (about 4% DW) can be produced under nitrogen starvation of Haematococcus pluvialis in photobioreactors (PBRs) exposed to high light conditions to induce a light stress. However, in PBR, the large biomass concentration usually achieved leads to strong light attenuation conditions, which makes complex the analysis of this “light stress”. This study aims to elucidate the role of light transfer in astaxanthin cell content and productivity from the microalga Haematococcus pluvialis during nitrogen starvation. Haematococcus pluvialis was cultivated in a flat-panel PBR in a batch mode with sudden nitrogen starvation conditions and an incident photon flux density (PFD) of 250 µmol m−2 s−1. Different initial biomass concentrations (${C}_{{x}_{0}}$) were evaluated, 0.21, 0.52, 1.39 and 2.21 kg m−3. As a result, spectral mass absorption cross-sections of Haematococcus pluvialis were measured at different times during nitrogen starvation, and were used to relate the mean rate of photon absorption (MRPA) to the astaxanthin productivity. A minimum initial MRPA of 7000 ± 500 µmol kgx −1 s−1 was found necessary to trigger large accumulation of astaxanthin in Haematococcus pluvialis cells (up to 3.21% DW) during nitrogen starvation conditions. The results also demonstrated the link between the MRPA and the daily astaxanthin productivity of Haematococcus pluvialis cultures, introducing then the MRPA as a physical quantity of interest for a rational optimization of the light culture conditions in PBRs.

Keywords

Haematococcus pluvialis / Photobioreactor / Photosynthesis / Light transfer / Astaxanthin accumulation / Nitrogen starvation

Cite this article

Download citation ▾
Khadija Samhat, Antoinette Kazbar, Hosni Takache, Ali Ismail, Jeremy Pruvost. Influence of light absorption rate on the astaxanthin production by the microalga Haematococcus pluvialis during nitrogen starvation. Bioresources and Bioprocessing, 2023, 10(1): 78 DOI:10.1186/s40643-023-00700-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Béchet Q, Shilton A, Guieysse B. Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv, 2013, 31: 1648-1663.

[2]

Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol, 1996, 110: 689-696.

[3]

Boussiba S. Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant, 2000, 108: 111-117.

[4]

Boussiba S, Vonshak A. Astaxanthin accumulation in the Green Alga Haematococcus pluvialis. Plant Cell Physiol, 1991, 32: 1077-1082.

[5]

Boussiba S, Fan L, Vonshak A. Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol, 1992, 213: 386-391.

[6]

Cakmak T, Angun P, Demiray YE, . Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng, 2012, 109: 1947-1957.

[7]

Cassano AE, Martin CA, Brandi RJ, Alfano OM. Photoreactor analysis and design: fundamentals and applications. Ind Eng Chem Res, 1995, 34: 2155-2201.

[8]

Chekanov K, Schastnaya E, Neverov K, . Non-photochemical quenching in the cells of the carotenogenic chlorophyte Haematococcus lacustris under favorable conditions and under stress. Biochimica Et Biophysica Acta (BBA) General Subjects, 2019, 1863: 1429-1442.

[9]

Cornet J-F, Dussap C-G. A Simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. Biotechnol Progress, 2009, 25: 424-435.

[10]

Cornet JF, Dussap CG, Cluzel P, Dubertret G. A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: II. Identification of kinetic parameters under light and mineral limitations. Biotechnol Bioeng, 1992, 40: 826-834.

[11]

Fábregas J, Otero A, Maseda A, Domínguez A. Two-stage cultures for the production of Astaxanthin from Haematococcus pluvialis. J Biotechnol, 2001, 89: 65-71.

[12]

Fábregas J, Domínguez A, Maseda A, Otero A. Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl Microbiol Biotechnol, 2003, 61: 545-551.

[13]

Fan L, Vonshak A, Zarka A, Boussiba S. Does astaxanthin protect Haematococcus against light damage?. Zeitschrift Für Naturforschung C, 1998, 53: 93-100.

[14]

Ferrel Ballestas FR, Titica M, Legrand J, . Prediction of the radiation characteristics and the light absorption rate of Chlamydomonas reinhardtii cultivated under a progressive nitrogen starvation and accumulating carbon reserves. J Quant Spectrosc Radiat Transfer, 2023, 309.

[15]

Flynn KJ, Davidson K, Cunningham A. Relations between carbon and nitrogen during growth of Nannochloropsis oculata (Droop) Hibberd under continuous illumination. New Phytol, 1993, 125: 717-722.

[16]

Grima EM, Camacho FG, Pérez JAS, . A mathematical model of microalgal growth in light-limited chemostat culture. J Chem Technol Biotechnol, 1994, 61: 167-173.

[17]

Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol, 2003, 21: 210-216.

[18]

Han D, Li Y, Hu Q. Richmond A, Hu Q. Biology and commercial aspects of Haematococcus pluvialis. Handbook of microalgal culture, 2013, Oxford: John Wiley & Sons Ltd, 388-405.

[19]

Harker M, Tsavalos AJ, Young AJ. Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis. Biores Technol, 1996, 55: 207-214.

[20]

Hu Z, Li Y, Sommerfeld M, . Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol, 2008, 43: 365-376.

[21]

Jonasz M, Fournier G. Light scattering by particles in water: theoretical and experimental foundations, 2007, 1, Amsterdam: Elsevier/Academic Press.

[22]

Kandilian R, Pruvost J, Legrand J, Pilon L. Influence of light absorption rate by Nannochloropsis oculata on triglyceride production during nitrogen starvation. Biores Technol, 2014, 163: 308-319.

[23]

Kandilian R, Soulies A, Pruvost J, . Simple method for measuring the spectral absorption cross-section of microalgae. Chem Eng Sci, 2016, 146: 357-368.

[24]

Kandilian R, Taleb A, Heredia V, . Effect of light absorption rate and nitrate concentration on TAG accumulation and productivity of Parachlorella kessleri cultures grown in chemostat mode. Algal Res, 2019, 39.

[25]

Kang CD, Lee JS, Park TH, Sim SJ. Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol, 2005, 68: 237-241.

[26]

Kobayashi M, Kakizono T, Nishio N, . Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol, 1997, 48: 351-356.

[27]

le Williams PJB, Laurens LML. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci, 2010, 3: 554.

[28]

Lee HY, Erickson LE, Yang SS. Kinetics and bioenergetics of light-limited photoautotrophic growth of Spirulina platensis. Biotechnol Bioeng, 1987, 29: 832-843.

[29]

Lee E, Pruvost J, He X, . Design tool and guidelines for outdoor photobioreactors. Chem Eng Sci, 2014, 106: 18-29.

[30]

Li Y, Sommerfeld M, Chen F, Hu Q. Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol, 2010, 22: 253-263.

[31]

Liu H, Huang W-C, Guo N, Mao X. Application of secondary amine switchable hydrophilicity solvents for astaxanthin extraction from wet Haematococcus pluvialis. Algal Res, 2020, 48: 101892.

[32]

Lorenz RT, Cysewski GR. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol, 2000, 18: 160-167.

[33]

Nichols HW, Bold HC. Trichosarcina polymorpha Gen. et Sp. Nov J Phycol, 1965, 1: 34-38.

[34]

Olaizola M. No title found. J Appl Phycol, 2000, 12: 499-506.

[35]

Pottier L, Pruvost J, Deremetz J, . A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus photobioreactor. Biotechnol Bioeng, 2005, 91: 569-582.

[36]

Pruvost J, Cornet J-F. Posten C, Walter C. Knowledge models for the engineering and optimization of photobioreactors. Microalgal biotechnology: potential and production, 2012, Berlin: De Gruyter, 181-224.

[37]

Pruvost J, Van Vooren G, Cogne G, Legrand J. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Biores Technol, 2009, 100: 5988-5995.

[38]

Qiu N, Wang X, Zhou F. A new method for fast extraction and determination of chlorophylls in natural water. Zeitschrift Für Naturforschung C, 2018, 73: 77-86.

[39]

Ranjbar R, Inoue R, Katsuda T, . High efficiency production of astaxanthin in an airlift photobioreactor. J Biosci Bioeng, 2008, 106: 204-207.

[40]

Recht L, Töpfer N, Batushansky A, . Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis. J Biol Chem, 2014, 289: 30387-30403.

[41]

Rizzo A, Ross ME, Norici A, Jesus B. A two-step process for improved biomass production and non-destructive Astaxanthin and carotenoids accumulation in Haematococcus pluvialis. Appl Sci, 2022, 12: 1261.

[42]

Schmollinger S, Mühlhaus T, Boyle NR, . Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell, 2014, 26: 1410-1435.

[43]

Scibilia L, Girolomoni L, Berteotti S, . Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Res, 2015, 12: 170-181.

[44]

Solovchenko AE, Chivkunova OB, Maslova IP. Pigment composition, optical properties, and resistance to photodamage of the microalga Haematococcus pluvialis cultivated under high light. Russ J Plant Physiol, 2011, 58: 9-17.

[45]

Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Bulletin of Fisheries Research Board of Canada

[46]

Takache H, Christophe G, Cornet J-F, Pruvost J. Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnol Progress, 2009

[47]

Takache H, Pruvost J, Cornet J-F. Kinetic modeling of the photosynthetic growth of Chlamydomonas reinhardtii in a photobioreactor. Biotechnol Progress, 2012, 28: 681-692.

[48]

Taleb A, Pruvost J, Legrand J, . Development and validation of a screening procedure of microalgae for biodiesel production: Application to the genus of marine microalgae Nannochloropsis. Biores Technol, 2015, 177: 224-232.

[49]

Taleb A, Kandilian R, Touchard R, . Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production. Biores Technol, 2016, 218: 480-490.

[50]

Van Vooren G, Le Grand F, Legrand J, . Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel application. Biores Technol, 2012, 124: 421-432.

[51]

Wang J, Han D, Sommerfeld MR, . Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J Appl Phycol, 2013, 25: 253-260.

[52]

Wang J, Sommerfeld MR, Lu C, Hu Q. Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae, 2013, 28: 193-202.

[53]

Zhang W, Zhou X, Zhang Y, . Enhancing astaxanthin accumulation in Haematococcus pluvialis by coupled light intensity and nitrogen starvation in column photobioreactors. J Microbiol Biotechnol, 2018, 28: 2019-2028.

Funding

Université Libanaise

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/