Bioprospecting thermostable cellulosomes for efficient biofuel production from lignocellulosic biomass

Richa Arora, Shuvashish Behera, Nilesh Kumar Sharma, Sachin Kumar

Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 38.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 38. DOI: 10.1186/s40643-015-0066-4
Review

Bioprospecting thermostable cellulosomes for efficient biofuel production from lignocellulosic biomass

Author information +
History +

Abstract

The adverse climatic conditions due to continuous use of fossil-derived fuels are the driving factors for the development of renewable sources of energy. Current biofuel research focuses mainly on lignocellulosic biomass (LCB) such as agricultural, industrial and municipal solid wastes due to their abundance and renewability. Although many mesophilic cellulolytic microorganisms have been reported, efficient and economical bioconversion to simple sugars is still a challenge. Thermostable cellulolytic enzymes play an indispensible role in degradation of the complex polymeric structure of LCB into fermentable sugar stream due to their higher flexibility with respect to process configurations and better specific activity than the mesophilic enzymes. In some anaerobic thermophilic/thermotolerant microorganisms, few cellulases are organized as unique multifunctional enzyme complex, called the cellulosome. The use of cellulosomal multienzyme complexes for saccharification seems to be a promising and cost-effective alternative for complete breakdown of cellulosic biomass. This paper aims to explore and review the important findings in cellulosomics and forward the path for new cutting-edge opportunities in the success of biorefineries. Herein, we summarize the protein structure, regulatory mechanisms and their expression in the host cells. Furthermore, we discuss the recent advances in specific strategies used to design new multifunctional cellulosomal enzymes, which can function as lignocellulosic biocatalysts and evaluate the roadblocks in the yield and stability of such designer thermozymes with overall progress in lignocellulose-based biorefinery.

Keywords

Cellulose hydrolysis / Cellulosomes / Scaffoldin / Nanomachines / Synergy

Cite this article

Download citation ▾
Richa Arora, Shuvashish Behera, Nilesh Kumar Sharma, Sachin Kumar. Bioprospecting thermostable cellulosomes for efficient biofuel production from lignocellulosic biomass. Bioresources and Bioprocessing, 2015, 2(1): 38 https://doi.org/10.1186/s40643-015-0066-4

References

Adams JJ, Webb BA, Spencer HL, Smith SP. Structural characterization of the type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. Biochemistry, 2005, 44: 2173-2182.
Alper H, Stephanopoulos G. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?. Nat Rev Microbiol, 2009, 7: 715-723.
Anbar M, Gul O, Lamed R, Sezerman UO, Bayer EA. Improved thermostability of Clostridium thermocellum endoglucanase Cel8A using consensus-guided mutagenesis. Appl Environ Microbiol, 2012, 287: 9213-9221.
Arora R, Behera S, Sharma NK, Singh R, Yadav YK, Kumar S. Sharma NR, Thakur RC, Sharma M, Parihar L, Kumar G. Biochemical conversion of rice straw (Oryza sativa L.) to bioethanol using thermotolerant isolate K. marxianus NIRE-K3. Proceedings of exploring and basic sciences for Next Generation Frontiers, 2014, New Delhi: Elsevier, 143-146.
Arora R, Behera S, Kumar S (2015) Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective. Renew Sust Energy Rev 51:699–717
Bayer EA, Morag E, Lamed R. The cellulosome: a treasure-trove for biotechnology. Trends Biotechnol, 1994, 12: 379-386.
Bayer EA, Belaich JP, Shoham Y, Lamed R. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol, 2004, 58: 521-554.
Bayer EA, Lamed R, Himmel ME. The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol, 2007, 18: 237-245.
Bayer EA, Lamed R, White BA, Flint HJ. From cellulosomes to cellulosomics. Chem Rec, 2008, 8: 364-377.
Bayer EA, Smith SP, Noach I, Alber O, Adams JJ, Lamed R, Shimon LJW, Frolow F. Karita S, Kimura T, Sakka M, Matsui H, Miyake H, Tanaka A, Sakka K. Can we crystallize a cellulosome?. Biotechnology of lignocellulose degradation and biomass utilization, 2009, Tokyo: Ito Print Publishing, 183-205.
Behera S, Arora R, Kumar S (2013) Bioprospecting the cellulases and xylanases thermozymes for the production of biofuels. In: Paper presented at AICHE Annual Meeting, San Francisco, 3–8 November, 2013
Behera S, Arora R, Nandhagopal N, Kumar S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energy Rev, 2014, 36: 91-106.
Belaich JP, Tardif C, Belaich A, Gaudin C. The cellulolytic system of Clostridium cehlolyticum. J Biotechnol, 1997, 57: 3-14.
Blanchette C, Lacayo CI, Fischer NO, Hwang M, Thelen MP. Enhanced cellulose degradation using cellulase-nanosphere complexes. PLoS One, 2012, 7: e42116.
Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, Pages S, de Philip P. Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics, 2010, 10: 541-554.
Bomble YJ, Beckham GT, Matthews JF, Nimlos MR, Himmel ME, Crowley MF. Modeling the self-assembly of the cellulosome enzyme complex. J Biol Chem, 2011, 286: 5614-5623.
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J, 2004, 382: 769-781.
Bras JLA, Carvalhi AL, Viegas A, Najmudin S, Alves VD, Prates JAM, Ferreira LMA, Romao MJ, Gilbert HJ, Fontes CMGA. Escherichia coli expression, purification, crystallization, and structure determination of bacterial cohesin–dockerin complexes. Methods Enzymol, 2012, 510: 395-415.
Cadena EM, Chriac AI, Pastor FI, Diaz P, Vidal T, Torres AL. Use of cellulases and recombinant cellulose binding domains for refining TCF kraft pulp. Biotechnol Prog, 2010, 26: 960-967.
Caspi J, Irwin D, Lamed R, Li Y, Fierobe HP, Wilson DB, Bayer EA. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J Biotechnol, 2008, 135: 351-357.
Chanal A, Mingardon F, Bauzan M, Tardif C, Fierobe HP. Scaffoldin modules can serve as ‘‘cargo’’ domains to promote the secretion of heterologous cellulosomal cellulases by Clostridium acetobutylicum. Appl Environ Microbiol, 2011, 77: 6277-6280.
Chen C, Cui Z, Xiao Y, Cui Q, Smith SP, Lamed R, Bayer EA, Feng Y. Revisiting the NMR solution structure of the Cel48S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformation. J Struct Biol, 2014, 188: 188-193.
Cho W, Jeon SD, Shim HJ, Doi RH, Han SO. Cellulosomic profiling produced by Clostridium cellulovorans during growth on different carbon sources explored by the cohesin marker. J Biotechnol, 2010, 145: 233-239.
Chundawat SPS, Beckham GT, Himmel ME, Dale BE. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng, 2011, 2: 121-145.
Desvaux M. Clostridium cellulolyticum model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev, 2005, 29: 741-764.
Desvaux M, Dumas E, Chafsey I, Hebraud M. Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett, 2006, 256: 1-15.
Desvaux M, Hebraud M, Taylor R, Henderson IR. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol, 2009, 17: 139-145.
Ding SY, Xu Q, Crowley M, Zeng Y, Nimlos M, Lamed R, Bayer EA, Himmel ME. A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr Opin Biotechnol, 2008, 19: 218-227.
Ding SY, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?. Science, 2012, 338: 1055-1060.
Doi RH. Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci, 2008, 1125: 267-279.
Doi RH, Kosugi A. Cellulosomes: plant cell wall degrading enzyme complexes. Nat Rev (Microbiol), 2004, 2: 541-551.
Elkins JG, Raman B, Keller M. Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr Opin Biotechnol, 2010, 21: 657-662.
Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci USA, 2012, 109: 13260-13265.
Fierobe H-P, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich JP, Bayer EA. Design and production of active cellulosome chimeras: selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem, 2001, 276: 21257-21261.
Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon MT, Pages S, Lamed R, Tardif C, Belaich JP, Bayer EA. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem, 2005, 280: 16325-16334.
Fontes C, Gilbert HJ. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem, 2010, 79: 655-681.
Fukuda T, Isogawa D, Takagi M, Kato-Murai M, Kimoto H, Kusaoke H, Ueda M, Suye S. Yeast cell-surface expression of chitosanase from Paenibacillus fukuinensis. Biosci Biotechnol Biochem, 2007, 71: 2845-2847.
Fukuda T, Tsuchiyama K, Makishima H, Takayama K, Mulchandani A, Kuroda K, Ueda M, Suye S. Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system. Biotechnol Lett, 2010, 32: 655-659.
Gao SH, You C, Renneckar S, Bao J, Zhang YHP. New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP. Biotechnol Biofuels, 2014, 7: 24.
Garcia-Alvarez B, Melero R, Dias FM, Prates JA, Fontes CM, Smith SP, Romao MJ, Carvalho AL, Llotca O. Molecular architecture and structural transitions of a CLostridium thermocellum mini-cellulosome. J Mol Biol, 2011, 407: 571-580.
Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U. Cellulases for biomass degradation: comparing recombinant cellulose expression platforms. Trends Biotechnol, 2013, 31: 581-593.
Gefen G, Anbar M, Morag E, Lamed R, Bayer EA. Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Proc Natl Acad Sci USA, 2012, 109: 10298-10303.
Gourlay K, Arantes V, Saddler JN. Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol Biofuels, 2012, 5: 51.
Goyal G, Tsai S-L, Madan B, DaSilva NA, Chen W. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact, 2011, 10: 89.
Hasunuma T, Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocelluloses to bioethanol through cell surface engineering. Biotechnol Adv, 2012, 30: 1207-1218.
Hemme CL, Mouttaki H, Lee YJ, Zhang G, Goodwin L, Lucas S, Copeland A, Lapidus A, Glavina del Rio T, Tice H, Saunders E, Brettin T, Detter JC, Han CS, Pitlick S, Land ML, Hauser LJ, Kyrpides N, Mikhailova N, He Z, Wu L, Van Nostrand JD, Henrissat B, He Q, Lawson PA, Tanner RS, Lynd LR, Wiegel J, Fields MW, Arkin AP, Schadt CW, Stevenson BS, Mclnerney MJ, Yang Y, Dong H, Xing D, Ren N, Wang A, Huhnke RL, Mielenz JR, Ding SY, Himmel ME, Taghavi S, van der Lelie D, Rubin EM, Zhou J. Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production. J Bacteriol, 2010, 192: 6494-6496.
Hendrix J, Fried D, Barak Y, Bayer EA, Lamb DC. Conformational dynamics in designer cellulosomes studied by single-pair fret with Mfd-Pie. Biophys J, 2013, 104: 19a.
Himmel ME, Xu Q, Luo Y, Ding SY, Lamed R, Bayer EA. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels, 2010, 1: 323-341.
Horn JH, Vaaje-Kolstad G, Westereng B, Eijsink VGH. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels, 2012, 5: 1-12.
Hussack G, Luo Y, Veldhuis L, Hall JC, Tanha J, Mackenzie R. Multivalent anchoring and oriented display of single-domain antibodies on cellulose. Sensors, 2009, 9: 5351-5367.
Hyeon JE, Jeon WJ, Whang SY, Han SO. Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb Technol, 2011, 48: 371-377.
Hyeon JE, Kang DH, Kim YI, Jeon SD, You SK, Kim KY, Kim SW, Han SO. Production of functional agarolytic nano-complex for the synergistic hydrolysis of marine biomass and its potential application in carbohydrate-binding module-utilizing one-step purification. Process Biochem, 2012, 47: 877-881.
Hyeon JE, Jeon SD, Han SO. Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications. Biotechnol Adv, 2013, 31: 936-944.
Ichikawa S, Karita S, Kondo M, Goto M. Cellulosomal carbohydrate-binding module from Clostridium josui binds to crystalline and non-crystalline cellulose, and soluble polysaccharides. FEBS Lett, 2014, 588: 3886-3890.
Inaba C, Higuchi S, Morisaka H, Kuroda K, Ueda M. Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells. Appl Microbiol Biotechnol, 2010, 86: 1895-1902.
Ito J, Kosugi A, Tanaka T, Kuroda K, Shibasaki S, Ogino C, Ueda M, Fukuda H, Dsoi RH, Kondo A. Regulation of the display ratio of enzymes on the Sacchromyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains. Appl Environ Microbiol, 2009, 75: 4149-4154.
Jeon SD, Lee JE, Kim SJ, Kim SW, Han SO. Analysis of selective, high protein–protein binding interaction of cohesin–dockerin complex using biosensing methods. Biosens Bioelectron, 2012, 35: 382-389.
Ju LK, Afolabi OA. Wastepaper hydrolysate as soluble inducing substrate for cellulase production in continuous culture of Trichoderma reesei. Biotechnol Prog, 1999, 15: 91-97.
Juturu V, Wu JC. Microbial cellulases: Engineering, production and applications. Renew Sust Energy Rev, 2014, 33: 188-203.
Karmakar M, Ray RR. Current trends in research and application of microbial cellulases. Res J Microbiol, 2011, 6: 41-53.
Karpol A, Jobby MK, Slutzki M, Noach I, Chitayat S, Smith SP, Bayer EA. Structural and functional characterization of a novel type-III dockerin from Ruminococcus flavefaciens. FEBS Lett, 2013, 587: 30-36.
Kaya M, Ito J, Kotaka A, Matsumura K, Bando H, Sahara H, Ogino C, Shibasaki S, Kuroda K, Ueda M, Kondo A, Hata Y. Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillus oryzae on yeast cell surface. Appl Microbiol Biotechnol, 2008, 79: 51-60.
Kim S, Baek S-H, Lee K, Hahn J-S. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase. Microb Cell Fact, 2013, 12: 14.
Koukiekolo R, Cho HY, Kosugi A, Inui M, Yukawa H, Doi RH. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl Environ Microbiol, 2005, 71: 3504-3511.
Krauss J, Zverlov VV, Schwarz WH. In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose. Appl Environ Microbiol, 2012, 78: 4301-4307.
Kuhad RC, Gupta R, Singh A. Microbial cellulases and their industrial applications. Enzyme Res, 2011, 2011: 1-10.
Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol, 2008, 35: 377-391.
Kumar S, Singh SP, Mishra IM, Adhikari DK. Feasibility of ethanol production with enhanced sugar concentration in bagasse hydrolysate at high temperature using Kluyveromyces sp. IIPE453. Biofuels, 2010, 1: 697-704.
Kuroda K, Ueda M. Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol, 2010, 87: 53-60.
Kuroda K, Ueda M. Molecular design of the microbial cell surface toward the recovery of metal ions. Curr Opin Biotechnol, 2011, 22: 427-433.
Kuroda K, Nishitani T, Ueda M. Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol, 2012, 96: 153-159.
Lambertz C, Garvey M, Klinger J, Hessel D, Klose H, Fischer R, Commandeur U. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels, 2014, 7: 135.
Lamed R, Setter E, Bayer EA. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol, 1983, 156: 828-836.
Lavan LM, Van Dyk JS, Chan H, Dsoi RH, Pletschke BI. Effect of physical conditions and chemicals on the binding of a mini-CbpA from Clostridium cellulovorans to a semi-crystalline cellulose ligand. Lett Appl Microbiol, 2009, 48: 419-425.
Li D-C, Li A-N, Papageorgiou AC. Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzyme Res, 2011, 2011: 308730.
Liu G, Yue L, Chi Z, Yu W, Chi Z, Madzak C. The surface display of the alginate lyase on the cells of Yarrowia lipolytica for hydrolysis of alginate. Mar Biotechnol (NY), 2009, 11: 619-626.
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 2002, 66: 506-577.
Matano Y, Hasunuma T, Kondo A. Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulose with a cell surface-engineered yeast strain. Appl Microbiol Biotechnol, 2012, 97: 2231-2237.
Matano Y, Hasunuma T, Kondo A. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol, 2012, 108: 128-133.
Matsuoka H, Hashimoto K, Saijo A, Takada Y, Kondo A, Ueda M, Ooshima H, Tachibana T, Azuma M. Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae. Yeast, 2014, 31: 67-76.
Mazzoli R. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers tricks. Comput Struct Biotechnol J, 2012, 3: 1-9.
Mazzoli R, Lamberti C, Pessione E. Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol, 2012, 30: 111-119.
Mitsuzawa S, Kagawa H, Li Y, Chan SL, Paavola CD, Trent JD. The rosettazyme: a synthetic cellulosome. J Biotechnol, 2009, 143: 139-144.
Molinier AL, Nouailler M, Valette O, Tardif C, Receveur-Brechot V, Fierobe HP. Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers. J Mol Biol, 2011, 405: 143-157.
Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA. Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio, 2010, 1: e00285-e00310.
Nakashima K, Yamaguchi K, Taniguchi N, Arai S, Yamada R, Katahira S, Ishida N, Takahashi H, Ogino C, Kondo A. Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chem, 2011, 13: 2948-2953.
Nataf Y, Bahari L, Kahel-Raifer H, Borovok I, Lamed R, Bayer EA, Sonenshein AL, Shoham Y. Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc Natl Acad Sci USA, 2010, 107: 18646-18651.
Nishitani T, Shimada M, Kuroda K, Ueda M. Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol, 2010, 86: 641-648.
Oliveira C, Carvalho V, Domingues L, Gama FM. Recombinant CBM-fusion technology—applications overview. Biotechnol Adv, 2015, 33: 358-369.
Prasetyo J, Naruse K, Kato T, Boonchird C, Harashima S, Park EY. Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnol Biofuels, 2011, 4: 35.
Raman B, Pan C, Hurst GB, Rodriguez JM, McKeown CK, Lankford PK, Samatova NF, Mielenz JR. Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One, 2009, 4: e5271.
Ramos R, Domingues L, Gama M. Escherichia coli expression and purification of LL37 fused to a family III carbohydrate-binding module from Clostridium thermocellum. Protein Expr Purif, 2010, 71: 1-7.
Ramos R, Moreira S, Rodrigues A, Gama M, Domingues L. Recombinant expression and purification of the antimicrobial peptide magainin-2. Biotechnol Prog, 2013, 29: 17-22.
Rollin JA, Zhu Z, Sathisuksanoh N, Zhang HP. Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng, 2011, 108: 22-30.
Sadhu S, Maiti TK. Cellulase production by bacteria: a review. British Microbiol Res J, 2013, 3: 235-258.
Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol, 2001, 56: 634-649.
Shahriarinour M, Wahab MNA, Mohamad R, Mustafa S, Ariff AB. Effect of medium composition and cultural condition on cellulase production by Aspergillus terreus. Afr J Biotechnol, 2011, 10: 7459-7467.
Shi X, Zheng F, Pan R, Wang J, Ding S. Engineering and comparative characteristics of double carbohydrate binding modules as a strength additive for papermaking applications. Bioresources, 2014, 9: 3117-3131.
Shoham Y, Lamed R, Bayer EA. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol, 1999, 275: 275-281.
Smith SP, Bayer EA. Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struct Biol, 2013, 23: 686-694.
Stern J, Anbar M, Morais S, Lamed R, Bayer EA. Insights into enhanced thermostability of a cellulosomal enzyme. Carbohyd Res, 2014, 389: 78-84.
Su GD, Huang DF, Han SY, Zheng SP, Lin Y. Display of Candida antarctica lipase B on Pichia pastoris and its application to flavor ester synthesis. Appl Microbiol Biotechnol, 2010, 86: 1493-1501.
Sukumaran RK, Singhania RR, Pandey A. Microbial cellulases: production, application and challenges. J Sci Ind Res, 2005, 64: 832-844.
Suzuki H, Imaedaa T, Kitagawa T, Kohda K. Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae. J Biotechnol, 2012, 157: 64-70.
Tamaru Y, Karita S, Ibrahim A, Chan H, Dsoi RH. A large gene cluster for the Clostridium cellulovorans cellulosome. J Bacteriol, 2000, 182: 5906-5910.
Tamaru Y, Miyake H, Kuroda K, Ueda M, Doi RH. Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing. Environ Technol, 2010, 31: 889-903.
Tanaka T, Kondo A (2015) Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol Adv (in press)
Taylor TJ, Vaisman II. Discrimination of thermophilic and mesophilic proteins. BMC Struct Biol, 2010, 10: S5.
Tsai SL, Oh J, Singh S, Chen R, Chen W. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol, 2009, 75: 6087-6093.
Tsai SL, Goyal G, Chen W. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol, 2010, 76: 7514-7520.
Tsai SL, DaSilva NA, Chen W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol, 2013, 2: 14-21.
Vazana Y, Morais S, Barak Y, Lamed R, Bayer EA. Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states. Appl Environ Microbiol, 2010, 76: 3236-3243.
Vazana Y, Morai S, Barak Y, Lamed R, Bayer EA. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol, 2012, 510: 429-452.
Vazana Y, Barak Y, Unger T, Peleg Y, Shamshoum M, Ben-Yehezkel T, Mazor Y, Shapiro E, Lamed R, Bayer EA. A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnol Biofuels, 2013, 6: 182.
Vodovnik M, Logar RM. Cellulosomes-promising supramolecular machines of anaerobic cellulolytic microorganisms. Acta Chim Slov, 2010, 57: 767-774.
Waeonukul R, Kosugi A, Prawitwong P, Deng L, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Saito M, Mori Y. Novel cellulase recycling method using a combination of Clostridium thermocellum cellulosomes and Thermoanaerobacter brockii β-glucosidase. Bioresour Technol, 2013, 130: 424-430.
Wan W, Wang D, Gao X, Hong J. Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Appl Microbiol Biotechnol, 2011, 91: 789-798.
Wen F, Sun J, Zhao H. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol, 2010, 76: 1251-1260.
Wieczorek AS, Martin VJ. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. Microb Cell Fact, 2010, 9: 69.
Wilson DB. Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol, 2011, 14: 259-263.
Wu I, Arnold FH. Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnol Bioeng, 2013, 110: 1874-1883.
Xu Z, Bae W, Mulchandani A, Mehra RK, Chen W. Heavy metal removal by novel CBD-EC20 sorbents immobilized on cellulose. Biomacromolecules, 2002, 3: 462-465.
Yamada R, Hasunuma T, Kondo A. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv, 2013, 31: 754-763.
Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol, 2010, 88: 381-388.
Yanase S, Yamada R, Kaneko S, Noda H, Hasunuma T, Tanaka T, Ogino C, Fukuda H, Kondo A. Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J, 2010, 5: 449-455.
Yaniv O, Jindou S, Frolow F, Lamed R, Bayer EA. A simple method for determining specificity of carbohydrate-binding modules for purified and crude insoluble polysaccharide substrates. Methods Mol Biol, 2012, 908: 101-107.
You C, Zhang XZ, Sathitsuksanoh N, Lynd LR, Zhang YH. Enhanced microbial utilization of recalcitrant cellulose by an exvivo cellulosome-microbe complex. Appl Environ Microbiol, 2012, 78: 1437-1444.
You C, Zhang XZ, Zhang YHP. Mini-scaffoldin enhanced mini-cellulosome hydrolysis performance on low-accessibility cellulose (Avicel) more than on high-accessibility amorphous cellulose. Biochem Eng J, 2012, 63: 57-65.
Funding
Ministry of New and Renewable Energy, Govt. of India

15

Accesses

28

Citations

Detail

Sections
Recommended

/