Preliminary investigations on a polygalacturonase from Aspergillus fumigatus in Chinese Pu’er tea fermentation
Shihui Wang, Zhongshuai Lian, Liuyang Wang, Xiao Yang, Yun Liu
Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 33.
Preliminary investigations on a polygalacturonase from Aspergillus fumigatus in Chinese Pu’er tea fermentation
Polygalacturonase is one kind of pectinases which hydrolyze the alpha-1,4 glycosidic bond between galacturonic acid residue. Polygalacturonase has been widely used in the fields of food, biofuel, and textile industries, in which thermostable polygalacturonase is often demanded at high temperatures of 50–60 °C. Herein, we reported a thermostable polygalacturonase producing from Aspergillus fumigatus isolated from the pile fermentation of Pu’er tea in China.
The thermophilic polygalacturonase-producing strain was identified as A. fumigatus L45 on basis of its morphology, physicochemical properties, and 18S rDNA analysis. The crucial fermentation parameters affecting polygalacturonase activity were optimized by response surface methodology (RSM); the optimum fermentation parameters were the following: inoculums concentration of 0.07 % (v/v), fermentation time of 36 h, pH of 5.0, and temperature of 45 °C. Under the optimized conditions, the highest polygalacturonase activity of 359.1 ± 10.1 U/mL was obtained. The polygalacturonase showed good thermostability and pH stability. The enzyme was activated by metal ions Zn2+ and Mg2+, but inhibited by K+. However, Na+ and Ca2+ showed little effects on its activity. Km and Vmax values were estimated to be 35.0 mg/mL and 7.69 μmol/mL/min, respectively.
A polygalacturonase from A. fumigatus L45 was preliminarily investigated, the crucial fermentation parameters were optimized by RSM, and the properties of polygalacturonase was examined. The polygalacturonase showed good thermostability and pH stability, which suggested the enzyme has potential applications in the biofuel and textile industries.
Polygalacturonase / Aspergillus fumigatus / Identification / Response surface methodology (RSM) / Enzymatic properties
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
Maller A, Damásio ARL, Silva TMd, Jorge JA, Terenzi HF, Polizeli MdLTdM (2011) Biotechnological potential of agro-industrial wastes as a carbon source to thermostable polygalacturonase production in Aspergillus niveus. Enzyme research. 2011:6. Article ID 289206, doi: 289210.284061/282011/289206
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
|
[31.] |
|
[32.] |
|
[33.] |
|
[34.] |
|
[35.] |
|
[36.] |
|
[37.] |
|
[38.] |
Siddiqui MA, Pande V, Arif M (2012) Production, purification, and characterization of polygalacturonase from Rhizomucor pusillus isolated from decomposting orange peels. Enzyme Res. 2012:8. Article ID 138634, doi:138610.131155/132012/138634
|
[39.] |
|
[40.] |
|
[41.] |
|
[42.] |
|
[43.] |
|
[44.] |
|
[45.] |
|
/
〈 |
|
〉 |