Ligninolytic enzymes: a biotechnological alternative for bioethanol production
Jersson Plácido, Sergio Capareda
Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 23.
Ligninolytic enzymes: a biotechnological alternative for bioethanol production
Ligninolytic fungi and enzymes (i.e., laccase, manganese peroxidase, and lignin peroxidase) have been applied recently in the production of second-generation biofuels. This review contains the analysis of ligninolytic enzymes and their applications in second-generation biofuels. In here, each of the ligninolytic enzymes was described analyzing their structures, catalysis, and reaction mechanism. Additionally, delignification and detoxification, the two most important applications of ligninolytic enzymes, were reviewed and analyzed. The analysis includes an evaluation of the biochemical process, feedstocks, and the ethanol production. This review describes the current situation of the ligninolytic enzymes technology and its future applications in bioethanol industry.
Ligninolytic fungi / Bioethanol / Laccases / Manganese peroxidase / Lignin peroxidase / Detoxification / Delignification
[1.] |
Sissine F, Energy Independence and Security Act of 2007: a summary of major provisions. 2007; 2011.
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
Nigam P, Gupta N, Anthwal A. Pre-treatment of agro-industrial residues. In: Nigam P and Pandey A. Biotechnology for Agro-Industrial Residues Utilisation, Springer Netherlands; 2009, p. 13–33.
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
Jönsson LJ, Palmqvist E, Nilvebrant N- and Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697. doi:10.1007/s002530051233.
|
[10.] |
|
[11.] |
|
[12.] |
Palmqvist E and Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24. doi:10.1016/S0960-8524(99)00160-1.
|
[13.] |
Martı́n C, Galbe M, Wahlbom CF, Hahn-Hägerdal B and Jönsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 31:274–282. doi:10.1016/S0141-0229(02)00112-6.
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
|
[31.] |
|
[32.] |
Dias A, Sampaio A, Bezerra R. Environmental applications of fungal and plant systems: decolourisation of textile wastewater and related dyestuffs. In: Singh S and Tripathi R. Environmental Bioremediation Technologies, Springer Berlin Heidelberg; 2007, p. 445–463.
|
[33.] |
|
[34.] |
Alcalde M. Laccases: biological functions, molecular structure and industrial applications. In: Polaina J and MacCabe AP. Industrial Enzymes, Springer Netherlands; 2007, p. 461–476.
|
[35.] |
|
[36.] |
|
[37.] |
|
[38.] |
|
[39.] |
|
[40.] |
|
[41.] |
|
[42.] |
Martin H, (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466. doi:10.1016/S0141-0229(01)00528-2.
|
[43.] |
|
[44.] |
|
[45.] |
|
[46.] |
|
[47.] |
|
[48.] |
|
[49.] |
[49] Faure D, Bouillant M- and Bally R (1995) Comparative study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia oryzae laccases. Appl Environ Microbiol 61:1144–1146
|
[50.] |
|
[51.] |
|
[52.] |
|
[53.] |
|
[54.] |
|
[55.] |
|
[56.] |
|
[57.] |
|
[58.] |
|
[59.] |
|
[60.] |
|
[61.] |
Khuong LD, Kondo R, De Leon R, Kim Anh T, Shimizu K and Kamei I (2014) Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60. Int Biodeterior Biodegrad 88:62–68. doi:http://dx.doi.org/10.1016/j.ibiod.2013.12.008.
|
[62.] |
|
[63.] |
|
[64.] |
Costa SM, Goncalves AR, Esposito E. Ceriporiopsis Subvermispota used in delignification of sugarcane bagasse prior to soda/anthraquinone pulping. In: Davison BH, Evans BR, Finkelstein M and McMillan JD. Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals, Humana Press; 2005, p. 695–706.
|
[65.] |
Archibald FS, Bourbonnais R, Jurasek L, Paice MG and Reid ID (1997) Kraft pulp bleaching and delignification by Trametes versicolor. J Biotechnol 53:215–236. doi:10.1016/S0168-1656(97)01675-1.
|
[66.] |
|
[67.] |
Asgher M, Ahmad Z and Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Industrial Crops and Products 44:488–495. doi:http://dx.doi.org/10.1016/j.indcrop.2012.10.005.
|
[68.] |
|
[69.] |
Camarero S, Garcı́a O, Vidal T, Colom J, del Rı́o JC, Gutiérrez A, Gras JM, Monje R, Martı́nez MJ and Martı́nez ÁT (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 35:113–120. doi:10.1016/j.enzmictec.2003.10.019.
|
[70.] |
|
[71.] |
|
[72.] |
Gutiérrez A, Rencoret J, Cadena EM, Rico A, Barth D, del Río JC and Martínez ÁT (2012) Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour Technol 119:114–122. doi:http://dx.doi.org/10.1016/j.biortech.2012.05.112.
|
[73.] |
Kamei I, Hirota Y, Mori T, Hirai H, Meguro S and Kondo R (2012) Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour Technol 112:137–142. doi:http://dx.doi.org/10.1016/j.biortech.2012.02.109.
|
[74.] |
Kamei I, Hirota Y and Meguro S (2012) Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 126:137–141. doi:http://dx.doi.org/10.1016/j.biortech.2012.09.007.
|
[75.] |
Khuong LD, Kondo R, Leon RD, Anh TK, Meguro S, Shimizu K and Kamei I (2014) Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 167:33–40. doi:http://dx.doi.org/10.1016/j.biortech.2014.05.064.
|
[76.] |
Ma K and Ruan Z (2015) Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresour Technol 175:586–593. doi:http://dx.doi.org/10.1016/j.biortech.2014.10.161.
|
[77.] |
Mate DM and Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33:25–40. doi:http://dx.doi.org.scopeesprx.elsevier.com/10.1016/j.biotechadv.2014.12.007.
|
[78.] |
|
[79.] |
|
[80.] |
|
[81.] |
|
[82.] |
|
[83.] |
|
[84.] |
|
[85.] |
|
[86.] |
|
[87.] |
|
[88.] |
Ishola MM, Isroi and Taherzadeh MJ (2014) Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresour Technol 165:9–12. doi:http://dx.doi.org/10.1016/j.biortech.2014.02.053.
|
[89.] |
|
[90.] |
|
[91.] |
Deswal D, Gupta R, Nandal P and Kuhad RC (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269. doi:http://dx.doi.org/10.1016/j.carbpol.2013.08.045.
|
[92.] |
Song L, Ma F, Zeng Y, Zhang X and Yu H (2013) The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover. Bioresour Technol 135:89–92. doi:http://dx.doi.org/10.1016/j.biortech.2012.09.004.
|
[93.] |
|
[94.] |
Kalyani D, Dhiman SS, Kim H, Jeya M, Kim I and Lee J (2012) Characterization of a novel laccase from the isolated Coltricia perennis and its application to detoxification of biomass. Process Biochemistry 47:671–678. doi:http://dx.doi.org/10.1016/j.procbio.2012.01.013.
|
[95.] |
Ludwig D, Amann M, Hirth T, Rupp S and Zibek S (2013) Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolyzates. Bioresour Technol 133:455–461. doi:http://dx.doi.org/10.1016/j.biortech.2013.01.053.
|
[96.] |
Lee K, Kalyani D, Tiwari MK, Kim T, Dhiman SS, Lee J and Kim I (2012) Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour Technol 123:636–645. doi:http://dx.doi.org/10.1016/j.biortech.2012.07.066.
|
[97.] |
Oliva-Taravilla A, Moreno AD, Demuez M, Ibarra D, Tomás-Pejó E, González-Fernández C and Ballesteros M (2015) Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw. Bioresour Technol 175:209–215. doi:http://dx.doi.org/10.1016/j.biortech.2014.10.086.
|
[98.] |
Delgenes JP, Moletta R and Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225. doi:10.1016/0141-0229(95)00237-5.
|
[99.] |
|
[100.] |
|
[101.] |
|
/
〈 |
|
〉 |