Ligninolytic enzymes: a biotechnological alternative for bioethanol production

Jersson Plácido, Sergio Capareda

Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 23.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 23. DOI: 10.1186/s40643-015-0049-5
Review

Ligninolytic enzymes: a biotechnological alternative for bioethanol production

Author information +
History +

Abstract

Ligninolytic fungi and enzymes (i.e., laccase, manganese peroxidase, and lignin peroxidase) have been applied recently in the production of second-generation biofuels. This review contains the analysis of ligninolytic enzymes and their applications in second-generation biofuels. In here, each of the ligninolytic enzymes was described analyzing their structures, catalysis, and reaction mechanism. Additionally, delignification and detoxification, the two most important applications of ligninolytic enzymes, were reviewed and analyzed. The analysis includes an evaluation of the biochemical process, feedstocks, and the ethanol production. This review describes the current situation of the ligninolytic enzymes technology and its future applications in bioethanol industry.

Keywords

Ligninolytic fungi / Bioethanol / Laccases / Manganese peroxidase / Lignin peroxidase / Detoxification / Delignification

Cite this article

Download citation ▾
Jersson Plácido, Sergio Capareda. Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresources and Bioprocessing, 2015, 2(1): 23 https://doi.org/10.1186/s40643-015-0049-5

References

[1.]
Sissine F, Energy Independence and Security Act of 2007: a summary of major provisions. 2007; 2011.
[2.]
Dias AA, Freitas GS, Marques GSM, Sampaio A, Fraga IS, Rodrigues MAM, Evtuguin DV, Bezerra RMF. Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol, 2010, 101: 6045-6050.
CrossRef Google scholar
[3.]
Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT, Martínez MJ. Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol, 2011, 102: 7500-7506.
CrossRef Google scholar
[4.]
Wan C, Li Y. Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresour Technol, 2011, 102: 7507-7512.
CrossRef Google scholar
[5.]
Nigam P, Gupta N, Anthwal A. Pre-treatment of agro-industrial residues. In: Nigam P and Pandey A. Biotechnology for Agro-Industrial Residues Utilisation, Springer Netherlands; 2009, p. 13–33.
[6.]
Li L, Li X, Tang W, Zhao J, Qu Y. Screening of a fungus capable of powerful and selective delignification on wheat straw. Lett Appl Microbiol, 2008, 47: 415-420.
CrossRef Google scholar
[7.]
Wan C, Li Y. Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme Microb Technol, 2010, 47: 31-36.
CrossRef Google scholar
[8.]
Lu C, Wang H, Luo Y, Guo L. An efficient system for pre-delignification of gramineous biofuel feedstock in vitro: application of a laccase from Pycnoporus sanguineus H275. Process Biochemistry, 2010, 45: 1141-1147.
CrossRef Google scholar
[9.]
Jönsson LJ, Palmqvist E, Nilvebrant N- and Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697. doi:10.1007/s002530051233.
[10.]
Larsson S, Reimann A, Nilvebrant N, Jönsson L. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol, 1999, 77: 91-103.
CrossRef Google scholar
[11.]
Kolb M, Sieber V, Amann M, Faulstich M, Schieder D. Removal of monomer delignification products by laccase from Trametes versicolor. Bioresour Technol, 2012, 104: 298-304.
CrossRef Google scholar
[12.]
Palmqvist E and Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24. doi:10.1016/S0960-8524(99)00160-1.
[13.]
Martı́n C, Galbe M, Wahlbom CF, Hahn-Hägerdal B and Jönsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 31:274–282. doi:10.1016/S0141-0229(02)00112-6.
[14.]
Chandel AK, Kapoor RK, Singh A, Kuhad RC. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol, 2007, 98: 1947-1950.
CrossRef Google scholar
[15.]
Minussi RC, Pastore GM, Durán N. Laccase induction in fungi and laccase/N-OH mediator systems applied in paper mill effluent. Bioresour Technol, 2007, 98: 158-164.
CrossRef Google scholar
[16.]
Matera I, Gullotto A, Tilli S, Ferraroni M, Scozzafava A, Briganti F. Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorg Chim Acta, 2008, 361: 4129-4137.
CrossRef Google scholar
[17.]
Zouari-Mechichi H, Mechichi T, Dhouib A, Sayadi S, Martínez AT, Martínez MJ. Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microb Technol, 2006, 39: 141-148.
CrossRef Google scholar
[18.]
Corvini P, Schäffer A, Schlosser D. Microbial degradation of nonylphenol and other alkylphenols - our evolving view. Appl Microbiol Biotechnol, 2006, 72: 223-243.
CrossRef Google scholar
[19.]
Babot ED, Rico A, Rencoret J, Kalum L, Lund H, Romero J, del Río JC, Martínez ÁT, Gutiérrez A. Towards industrially-feasible delignification and pitch removal by treating paper pulp with Myceliophthora thermophila laccase and a phenolic mediator. Bioresour Technol, 2011, 102: 6717-6722.
CrossRef Google scholar
[20.]
Sergio R. Laccases: blue enzymes for green chemistry. Trends Biotechnol, 2006, 24: 219-226.
CrossRef Google scholar
[21.]
Couto S, Toca-Herrera J. Lacasses in the textile industry. Biotechnol Mol Biol Rev, 2006, 1: 115-120.
[22.]
Kokol V, Doliška A, Eichlerová I, Baldrian P, Nerud F. Decolorization of textile dyes by whole cultures of Ischnoderma resinosum and by purified laccase and Mn-peroxidase. Enzyme Microb Technol, 2007, 40: 1673-1677.
CrossRef Google scholar
[23.]
Michniewicz A, Ledakowicz S, Ullrich R, Hofrichter M. Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes and Pigments, 2008, 77: 295-302.
CrossRef Google scholar
[24.]
Shanmugam S, Palvannan T, Sathish Kumar T, Michael A. Biological decolourization of textile and paper effluents by Pleurotus florida and Agaricus bisporus (white-rot Basidiomycetes). World Journal of Microbiology and Biotechnology, 2005, 21: 1149-1151.
CrossRef Google scholar
[25.]
Chanagá Vera X, Plácido Escobar J, Marín Montoya M, Pérez Y, del Socorro M. Native fungi with industrial dye degrading potential in the Aburrá Valley, Colombia. Revista Facultad Nacional de Agronomía, Medellín, 2012, 65: 6811-6821.
[26.]
Moreno AD, Ibarra D, Fernández JL, Ballesteros M. Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour Technol, 2012, 106: 101-109.
CrossRef Google scholar
[27.]
Plácido J, Imam T, Capareda S. Evaluation of ligninolytic enzymes, ultrasonication and liquid hot water as pretreatments for bioethanol production from cotton gin trash. Bioresour Technol, 2013, 139: 203-208.
CrossRef Google scholar
[28.]
Plácido J, Capareda S. Analysis of alkali ultrasonication pretreatment in bioethanol production from cotton gin trash using FT-IR spectroscopy and principal component analysis. Bioresources and Bioprocessing, 2014, 1: 1-9.
CrossRef Google scholar
[29.]
Ferraroni M, Myasoedova N, Schmatchenko V, Leontievsky A, Golovleva L, Scozzafava A, Briganti F. Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Structural Biology, 2007, 7: 60.
CrossRef Google scholar
[30.]
Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C. Crystal structure of a four-copper laccase complexed with an Arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry (N Y ), 2002, 41: 7325-7333.
CrossRef Google scholar
[31.]
Hakulinen N, Kiiskinen L, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Mol Biol, 2002, 9: 601-605.
[32.]
Dias A, Sampaio A, Bezerra R. Environmental applications of fungal and plant systems: decolourisation of textile wastewater and related dyestuffs. In: Singh S and Tripathi R. Environmental Bioremediation Technologies, Springer Berlin Heidelberg; 2007, p. 445–463.
[33.]
Holwerda RA, Wherland S, Gray HB. Electron transfer reactions of copper proteins. Annu Rev Biophys Bioeng, 1976, 5: 363-396.
CrossRef Google scholar
[34.]
Alcalde M. Laccases: biological functions, molecular structure and industrial applications. In: Polaina J and MacCabe AP. Industrial Enzymes, Springer Netherlands; 2007, p. 461–476.
[35.]
Garavaglia S, Teresa Cambria M, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M. The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol, 2004, 342: 1519-1531.
CrossRef Google scholar
[36.]
Piontek K, Glumoff T, Winterhalter K. Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 Å resolution. FEBS Lett, 1993, 315: 119-124.
CrossRef Google scholar
[37.]
Sundaramoorthy M, Kishi K, Gold MH, Poulos TL. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. Journal of Biological Chemistry, 1994, 269: 32759-32767.
[38.]
Angel TM. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol, 2002, 30: 425-444.
CrossRef Google scholar
[39.]
Choinowski T, Blodig W, Winterhalter KH, Piontek K. The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the Cβ of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol, 1999, 286: 809-827.
CrossRef Google scholar
[40.]
Khindaria A, Yamazaki I, Aust SD. Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry (N Y), 1996, 35: 6418-6424.
CrossRef Google scholar
[41.]
Hammel KE, Cullen D. Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol, 2008, 11: 349-355.
CrossRef Google scholar
[42.]
Martin H, (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466. doi:10.1016/S0141-0229(01)00528-2.
[43.]
Polak J, Jarosz-Wilkolazka A. Fungal laccases as green catalysts for dye synthesis. Process Biochemistry, 2012, 47: 1295-1307.
CrossRef Google scholar
[44.]
Hoopes JT, Dean JFD. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiology and Biochemistry, 2004, 42: 27-33.
CrossRef Google scholar
[45.]
Bugg TD, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol, 2011, 22: 394-400.
CrossRef Google scholar
[46.]
Ramachandra M, Crawford DL, Hertel G. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol, 1988, 54: 3057-3063.
[47.]
Adav SS, Ng CS, Arulmani M, Sze SK. Quantitative iTRAQ secretome analysis of cellulolytic thermobifida fusca. Journal of Proteome Research, 2010, 9: 3016-3024.
CrossRef Google scholar
[48.]
Gupta N, Farinas ET. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Protein Engineering, Design and Selection, 2010, 23: 679-682.
CrossRef Google scholar
[49.]
[49] Faure D, Bouillant M- and Bally R (1995) Comparative study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia oryzae laccases. Appl Environ Microbiol 61:1144–1146
[50.]
Miyazaki K. A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles, 2005, 9: 415-425.
CrossRef Google scholar
[51.]
Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol, 2003, 69: 1953-1958.
CrossRef Google scholar
[52.]
Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure-function relationship among bacterial, fungal and plant laccases. J Molec Catal B, 2011, 68: 117-128.
CrossRef Google scholar
[53.]
Hattori M, Tsuchihara K, Noda H, Konishi H, Tamura Y, Shinoda T, Nakamura M, Hasegawa T. Molecular characterization and expression of laccase genes in the salivary glands of the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae). Insect Biochem Mol Biol, 2010, 40: 331-338.
CrossRef Google scholar
[54.]
Dittmer NT, Suderman RJ, Jiang H, Zhu Y, Gorman MJ, Kramer KJ, Kanost MR. Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol, 2004, 34: 29-41.
CrossRef Google scholar
[55.]
Coy MR, Salem TZ, Denton JS, Kovaleva ES, Liu Z, Barber DS, Campbell JH, Davis DC, Buchman GW, Boucias DG, Scharf ME. Phenol-oxidizing laccases from the termite gut. Insect Biochem Mol Biol, 2010, 40: 723-732.
CrossRef Google scholar
[56.]
Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, Kramer KJ. Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci U S A, 2005, 102: 11337-11342.
CrossRef Google scholar
[57.]
dos Santos AB, Cervantes FJ, van Lier JB. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol, 2007, 98: 2369-2385.
CrossRef Google scholar
[58.]
Martínez ÁT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A. Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol, 2009, 20: 348-357.
CrossRef Google scholar
[59.]
Vivekanand V, Dwivedi P, Sharma A, Sabharwal N, Singh R. Enhanced delignification of mixed wood pulp by Aspergillus fumigatus laccase mediator system. World Journal of Microbiology and Biotechnology, 2008, 24: 2799-2804.
CrossRef Google scholar
[60.]
Martín-Sampedro R, Eugenio ME, Carbajo JM, Villar JC. Combination of steam explosion and laccase-mediator treatments prior to Eucalyptus globulus kraft pulping. Bioresour Technol, 2011, 102: 7183-7189.
CrossRef Google scholar
[61.]
Khuong LD, Kondo R, De Leon R, Kim Anh T, Shimizu K and Kamei I (2014) Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60. Int Biodeterior Biodegrad 88:62–68. doi:http://dx.doi.org/10.1016/j.ibiod.2013.12.008.
[62.]
López-Abelairas M, Pallín , Salvachúa D, Lú-Chau T, Martínez M, Lema J. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess and biosystems engineering, 2013, 36: 1251-1260.
CrossRef Google scholar
[63.]
Mattinen M, Maijala P, Nousiainen P, Smeds A, Kontro J, Sipilä J, Tamminen T, Willför S, Viikari L. Oxidation of lignans and lignin model compounds by laccase in aqueous solvent systems. J Molec Catal B, 2011, 72: 122-129.
CrossRef Google scholar
[64.]
Costa SM, Goncalves AR, Esposito E. Ceriporiopsis Subvermispota used in delignification of sugarcane bagasse prior to soda/anthraquinone pulping. In: Davison BH, Evans BR, Finkelstein M and McMillan JD. Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals, Humana Press; 2005, p. 695–706.
[65.]
Archibald FS, Bourbonnais R, Jurasek L, Paice MG and Reid ID (1997) Kraft pulp bleaching and delignification by Trametes versicolor. J Biotechnol 53:215–236. doi:10.1016/S0168-1656(97)01675-1.
[66.]
Wang F, Xie H, Chen W, Wang E, Du F, Song A. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis. Bioresour Technol, 2013, 144: 572-578.
CrossRef Google scholar
[67.]
Asgher M, Ahmad Z and Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Industrial Crops and Products 44:488–495. doi:http://dx.doi.org/10.1016/j.indcrop.2012.10.005.
[68.]
Fillat U, Blanca Roncero M. Effect of process parameters in laccase-mediator system delignification of flax pulp: Part I. Pulp properties. Chem Eng J, 2009, 152: 322-329.
[69.]
Camarero S, Garcı́a O, Vidal T, Colom J, del Rı́o JC, Gutiérrez A, Gras JM, Monje R, Martı́nez MJ and Martı́nez ÁT (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 35:113–120. doi:10.1016/j.enzmictec.2003.10.019.
[70.]
Chen Q, Marshall MN, Geib SM, Tien M, Richard TL. Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresour Technol, 2012, 117: 186-192.
CrossRef Google scholar
[71.]
Qiu W, Chen H. Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresour Technol, 2012, 118: 8-12.
CrossRef Google scholar
[72.]
Gutiérrez A, Rencoret J, Cadena EM, Rico A, Barth D, del Río JC and Martínez ÁT (2012) Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour Technol 119:114–122. doi:http://dx.doi.org/10.1016/j.biortech.2012.05.112.
[73.]
Kamei I, Hirota Y, Mori T, Hirai H, Meguro S and Kondo R (2012) Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour Technol 112:137–142. doi:http://dx.doi.org/10.1016/j.biortech.2012.02.109.
[74.]
Kamei I, Hirota Y and Meguro S (2012) Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 126:137–141. doi:http://dx.doi.org/10.1016/j.biortech.2012.09.007.
[75.]
Khuong LD, Kondo R, Leon RD, Anh TK, Meguro S, Shimizu K and Kamei I (2014) Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 167:33–40. doi:http://dx.doi.org/10.1016/j.biortech.2014.05.064.
[76.]
Ma K and Ruan Z (2015) Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresour Technol 175:586–593. doi:http://dx.doi.org/10.1016/j.biortech.2014.10.161.
[77.]
Mate DM and Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33:25–40. doi:http://dx.doi.org.scopeesprx.elsevier.com/10.1016/j.biotechadv.2014.12.007.
[78.]
Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P, Mougin C, Jolivalt C. Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Engineering, Design and Selection, 2006, 19: 77-84.
CrossRef Google scholar
[79.]
Galli C, Gentili P, Jolivalt C, Madzak C, Vadalà R. How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates. Appl Microbiol Biotechnol, 2011, 91: 123-131.
CrossRef Google scholar
[80.]
Andberg M, Hakulinen N, Auer S, Saloheimo M, Koivula A, Rouvinen J, Kruus K. Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. FEBS Journal, 2009, 276: 6285-6300.
CrossRef Google scholar
[81.]
Annunziatini C, Baiocco P, Gerini MF, Lanzalunga O, Sjögren B. Aryl substituted N-hydroxyphthalimides as mediators in the laccase-catalysed oxidation of lignin model compounds and delignification of wood pulp. J Molec Catal B, 2005, 32: 89-96.
CrossRef Google scholar
[82.]
Oudia A, Queiroz J, Simões R. The influence of operating parameters on the biodelignification of Eucalyptus globulus kraft pulps in a laccase-violuric acid system. Appl Biochem Biotechnol, 2008, 149: 23-32.
CrossRef Google scholar
[83.]
Mukhopadhyay M, Kuila A, Tuli DK, Banerjee R. Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass Bioenergy, 2011, 35: 3584-3591.
CrossRef Google scholar
[84.]
Ibarra D, Romero J, Martínez MJ, Martínez AT, Camarero S. Exploring the enzymatic parameters for optimal delignification of eucalypt pulp by laccase-mediator. Enzyme Microb Technol, 2006, 39: 1319-1327.
CrossRef Google scholar
[85.]
Pinto PA, Dias AA, Fraga I, Marques G, Rodrigues MAM, Colaço J, Sampaio A, Bezerra RMF. Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresour Technol, 2012, 111: 261-267.
CrossRef Google scholar
[86.]
Kondo R, De Leon R, Anh TK, Meguro S, Shimizu K, Kamei I. Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol, 2014, 167: 33-40.
CrossRef Google scholar
[87.]
Dong XQ, Yang JS, Zhu N, Wang ET, Yuan HL. Sugarcane bagasse degradation and characterization of three white-rot fungi. Bioresour Technol, 2013, 131: 443-451.
CrossRef Google scholar
[88.]
Ishola MM, Isroi and Taherzadeh MJ (2014) Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresour Technol 165:9–12. doi:http://dx.doi.org/10.1016/j.biortech.2014.02.053.
[89.]
Suhara H, Kodama S, Kamei I, Maekawa N, Meguro S. Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegrad, 2012, 75: 176-180.
CrossRef Google scholar
[90.]
Wang W, Yuan T, Cui B, Dai Y. Pretreatment of Populus tomentosa with Trametes velutina supplemented with inorganic salts enhances enzymatic hydrolysis for ethanol production. Biotechnol Lett, 2012, 34: 2241-2246.
CrossRef Google scholar
[91.]
Deswal D, Gupta R, Nandal P and Kuhad RC (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269. doi:http://dx.doi.org/10.1016/j.carbpol.2013.08.045.
[92.]
Song L, Ma F, Zeng Y, Zhang X and Yu H (2013) The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover. Bioresour Technol 135:89–92. doi:http://dx.doi.org/10.1016/j.biortech.2012.09.004.
[93.]
Jurado M, Prieto A, Martínez-Alcalá Á, Martínez ÁT, Martínez MJ. Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol, 2009, 100: 6378-6384.
CrossRef Google scholar
[94.]
Kalyani D, Dhiman SS, Kim H, Jeya M, Kim I and Lee J (2012) Characterization of a novel laccase from the isolated Coltricia perennis and its application to detoxification of biomass. Process Biochemistry 47:671–678. doi:http://dx.doi.org/10.1016/j.procbio.2012.01.013.
[95.]
Ludwig D, Amann M, Hirth T, Rupp S and Zibek S (2013) Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolyzates. Bioresour Technol 133:455–461. doi:http://dx.doi.org/10.1016/j.biortech.2013.01.053.
[96.]
Lee K, Kalyani D, Tiwari MK, Kim T, Dhiman SS, Lee J and Kim I (2012) Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour Technol 123:636–645. doi:http://dx.doi.org/10.1016/j.biortech.2012.07.066.
[97.]
Oliva-Taravilla A, Moreno AD, Demuez M, Ibarra D, Tomás-Pejó E, González-Fernández C and Ballesteros M (2015) Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw. Bioresour Technol 175:209–215. doi:http://dx.doi.org/10.1016/j.biortech.2014.10.086.
[98.]
Delgenes JP, Moletta R and Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225. doi:10.1016/0141-0229(95)00237-5.
[99.]
Dijkman WP, Groothuis DE, Fraaije MW. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angewandte Chemie International Edition, 2014, 53: 6515-6518.
CrossRef Google scholar
[100.]
Ferreira P, Medina M, Guillén F, Martinez M, Van Berkel W, Martinez A. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochem J, 2005, 389: 731-738.
CrossRef Google scholar
[101.]
Carro J, Ferreira P, Rodríguez L, Prieto A, Serrano A, Balcells B, Ardá A, Jiménez-Barbero J, Gutiérrez A, Ullrich R, Hofrichter M, Martínez AT. 5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase. FEBS Journal:n/a-n/a, 2015
Funding
Fulbright-Colciencias(0000-0002-2070-3366)

14

Accesses

145

Citations

4

Altmetric

Detail

Sections
Recommended

/