An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing
Dayanidhi Sarkar, Kazuyuki Shimizu
Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 17.
An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing
Biofuel and biochemical production by photosynthetic microorganisms such as cyanobacteria and algae is attractive to improve energy security and to reduce CO2 emission, contributing to the environmental problems such as global warming. Although biofuel production by photosynthetic microorganisms is called as the third generation biofuels, and significant innovation is necessary for the feasibility in practice, these fuels are attractive due to renewable and potentially carbon neutral resources. Moreover, photosynthetic microorganisms are attractive since they can grow on non-arable land and utilize saline and wastewater streams. Highly versatile and genetically tractable photosynthetic microorganisms need to capture solar energy and convert atmospheric and waste CO2 to high-energy chemical products. Understanding of the metabolism and the efficient metabolic engineering of the photosynthetic organisms together with cultivation and separation processes as well as increased CO2 assimilation enables the enhancement of the feasibility of biofuel and biochemical production.
Microalgae / Cyanobacteria / Biofuels / Metabolic engineering / CO2 fixation / Metabolic regulation
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
Smil V (2005) Energy at the Crossroads: Global perspectives and uncertainties. MIT press.
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
Shimizu K (2014) Biofuels and biochemical production by microbes, Nova Publ. Co.
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
|
[31.] |
Dennis DT, Blakeley SD (2000) Carbohydrate metabolism. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville MD, pp 630–675
|
[32.] |
|
[33.] |
|
[34.] |
|
[35.] |
|
[36.] |
|
[37.] |
|
[38.] |
|
[39.] |
|
[40.] |
|
[41.] |
|
[42.] |
Harris EH (2009) The Chlamydomonas sourcebook: introduction to Chlamydomonas and its laboratory use Vol. 1, Acad Press.
|
[43.] |
|
[44.] |
|
[45.] |
|
[46.] |
|
[47.] |
|
[48.] |
|
[49.] |
|
[50.] |
|
[51.] |
|
[52.] |
|
[53.] |
|
[54.] |
|
[55.] |
|
[56.] |
|
[57.] |
|
[58.] |
|
[59.] |
|
[60.] |
|
[61.] |
|
[62.] |
|
[63.] |
|
[64.] |
|
[65.] |
|
[66.] |
|
[67.] |
|
[68.] |
|
[69.] |
|
[70.] |
|
[71.] |
|
[72.] |
|
[73.] |
|
[74.] |
|
[75.] |
|
[76.] |
|
[77.] |
|
[78.] |
|
[79.] |
|
[80.] |
|
[81.] |
|
[82.] |
|
[83.] |
|
[84.] |
|
[85.] |
|
[86.] |
|
[87.] |
|
[88.] |
|
[89.] |
|
[90.] |
|
[91.] |
|
[92.] |
|
[93.] |
|
[94.] |
|
[95.] |
|
[96.] |
|
[97.] |
|
[98.] |
|
[99.] |
|
[100.] |
|
[101.] |
|
[102.] |
|
[103.] |
|
[104.] |
|
[105.] |
|
[106.] |
|
[107.] |
|
[108.] |
|
[109.] |
|
[110.] |
|
[111.] |
|
[112.] |
|
[113.] |
|
[114.] |
|
[115.] |
|
[116.] |
|
[117.] |
|
[118.] |
|
[119.] |
de Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW, Nielsen LK (2011) AlgaGEM^a genome-scale metabolic reconstruction of algae based on the Chalamydomonas reinhardtii genome. BMC Genomics 12: (Suppl 4) S5
|
[120.] |
Knoop H, Grundel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R (2013). Flux balance analysis of cyanobacterial metabolism: The metabolic network of Synechocyctis sp. PCC6803. Plos Comp Biol;9(6): 21003081
|
[121.] |
|
[122.] |
|
[123.] |
|
[124.] |
|
[125.] |
|
[126.] |
|
[127.] |
|
[128.] |
Dienst D, Georg J, Abts T, Jakorew L, Kuchmina E, Borner T, Wilde A, Duhring U, Enke H, Hess WR (2014) Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechosystis sp. PCC6803. Biotechnol for Biofuels 7:21
|
[129.] |
|
[130.] |
|
[131.] |
|
[132.] |
|
[133.] |
|
[134.] |
|
[135.] |
|
[136.] |
Angermayr SA, van der Woude AD, Correddu D, Vreugdenhil A, Verrone V, Hellingwerf KJ (2014) Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechosystis sp. PCC6803. Biotechnol for Biofuels 7:99
|
[137.] |
|
[138.] |
|
[139.] |
|
[140.] |
Gao Q, Wang W, Zhao H, Lu X (2012). Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnol for Biofuels; 5:17
|
[141.] |
|
[142.] |
|
[143.] |
|
[144.] |
|
[145.] |
|
[146.] |
|
[147.] |
|
[148.] |
|
[149.] |
|
[150.] |
|
[151.] |
|
[152.] |
|
[153.] |
|
[154.] |
|
[155.] |
|
[156.] |
|
[157.] |
|
[158.] |
|
[159.] |
|
[160.] |
|
[161.] |
|
[162.] |
|
[163.] |
|
[164.] |
|
[165.] |
|
[166.] |
|
[167.] |
|
[168.] |
|
[169.] |
|
[170.] |
|
[171.] |
|
[172.] |
|
[173.] |
|
[174.] |
|
[175.] |
|
[176.] |
|
[177.] |
|
[178.] |
|
[179.] |
|
[180.] |
|
[181.] |
|
[182.] |
|
[183.] |
Mallick N (2006) Immobilization of microalgae. In Immobilization of Enzymes and Cells (pp. 373–391). Humana Press.
|
[184.] |
|
[185.] |
|
[186.] |
|
[187.] |
|
[188.] |
|
[189.] |
|
[190.] |
|
[191.] |
|
[192.] |
|
[193.] |
|
[194.] |
|
[195.] |
|
[196.] |
|
[197.] |
|
[198.] |
|
[199.] |
|
[200.] |
|
[201.] |
|
[202.] |
|
[203.] |
|
[204.] |
|
[205.] |
|
[206.] |
|
[207.] |
|
[208.] |
|
[209.] |
|
[210.] |
|
[211.] |
|
[212.] |
|
[213.] |
|
[214.] |
|
[215.] |
|
[216.] |
|
[217.] |
|
[218.] |
|
[219.] |
|
[220.] |
|
/
〈 |
|
〉 |