An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing

Dayanidhi Sarkar, Kazuyuki Shimizu

Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 17.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 17. DOI: 10.1186/s40643-015-0045-9
Review

An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing

Author information +
History +

Abstract

Biofuel and biochemical production by photosynthetic microorganisms such as cyanobacteria and algae is attractive to improve energy security and to reduce CO2 emission, contributing to the environmental problems such as global warming. Although biofuel production by photosynthetic microorganisms is called as the third generation biofuels, and significant innovation is necessary for the feasibility in practice, these fuels are attractive due to renewable and potentially carbon neutral resources. Moreover, photosynthetic microorganisms are attractive since they can grow on non-arable land and utilize saline and wastewater streams. Highly versatile and genetically tractable photosynthetic microorganisms need to capture solar energy and convert atmospheric and waste CO2 to high-energy chemical products. Understanding of the metabolism and the efficient metabolic engineering of the photosynthetic organisms together with cultivation and separation processes as well as increased CO2 assimilation enables the enhancement of the feasibility of biofuel and biochemical production.

Keywords

Microalgae / Cyanobacteria / Biofuels / Metabolic engineering / CO2 fixation / Metabolic regulation

Cite this article

Download citation ▾
Dayanidhi Sarkar, Kazuyuki Shimizu. An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresources and Bioprocessing, 2015, 2(1): 17 https://doi.org/10.1186/s40643-015-0045-9

References

[1.]
Canadell JG, Schulze ED. Global potential of biospheric carbon management for climate mitigation. Nature Commun, 2014, 5: 5282.
CrossRef Google scholar
[2.]
Schmidt LD, Dauenhauer PJ. Chemical engineering: hybrid routes to biofuels. Nature, 2007, 447: 914-915.
CrossRef Google scholar
[3.]
Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, . Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotechnol Bioeng, 2009, 102(1): 100-112.
CrossRef Google scholar
[4.]
Jones CS, Mayfield SP. Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol, 2012, 23(3): 346-351.
CrossRef Google scholar
[5.]
Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, . Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol, 2010, 21(3): 277-286.
CrossRef Google scholar
[6.]
Smil V (2005) Energy at the Crossroads: Global perspectives and uncertainties. MIT press.
[7.]
Larkum AWD, Ross IL, Kruse O, Hankamer B. Selection, breeding and engineering of microalgae for bioenergy and biofuels production. Trends Biotechnol, 2012, 30(4): 198-205.
CrossRef Google scholar
[8.]
Stephens AI. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels, 2010, 1: 47-58.
CrossRef Google scholar
[9.]
Larkum AWD. Limitations and prospects of natural photosynthesis for bioenergy production. Curr Opin Biotechnol, 2010, 21: 271-276.
CrossRef Google scholar
[10.]
Zhu XG, Long SP, Ort DR. Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol, 2010, 61: 235-261.
CrossRef Google scholar
[11.]
Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, . Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 2010, 329: 834-838.
CrossRef Google scholar
[12.]
Yuan L, Grotewold E. Metabolic engineering to enhance the value of plants as green factories. Metab Eng, 2015, 27: 83-91.
CrossRef Google scholar
[13.]
Overmann J, Garcia-Pichel F. Dworkin M, Falkow S. The photosynthetic way of life. The procaryotes: A handbook on the biology of bacteria, 2006, NewYork: Springer, 32-85.
CrossRef Google scholar
[14.]
Shimizu K (2014) Biofuels and biochemical production by microbes, Nova Publ. Co.
[15.]
Sheehan J. Engineering direct conversion of CO2 to biofuel. Nat Biotechnol, 2009, 27: 1128-1129.
CrossRef Google scholar
[16.]
Savakis P, Hellingwerf KJ. Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol, 2015, 33: 8-14.
CrossRef Google scholar
[17.]
Yu J. Bio-based products from solar energy and carbon dioxide. Trends Biotechnol, 2014, 32(1): 5-10.
CrossRef Google scholar
[18.]
Khan SA, Hussain MZ, Prasad S, Banerjee UC. Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev, 2009, 13(9): 2361-2372.
CrossRef Google scholar
[19.]
Chisti Y. Biodiesel from microalgae. Biotechnol Adv, 2007, 25: 294-306.
CrossRef Google scholar
[20.]
Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev, 2010, 14: 217-232.
CrossRef Google scholar
[21.]
Georgianna DR, Mayfield SP. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 2012, 488: 329-335.
CrossRef Google scholar
[22.]
Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels. Science, 2010, 329: 796-799.
CrossRef Google scholar
[23.]
Boyle NR, Morgan JA. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol, 2009, 3(1): 4.
CrossRef Google scholar
[24.]
Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol, 2008, 99(9): 3389-3396.
CrossRef Google scholar
[25.]
Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA. Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: A technical appraisal and economic feasibility evaluation. Biomass Bioenergy, 2011, 35(9): 3865-3876.
CrossRef Google scholar
[26.]
Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, . Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol, 2010, 101(15): 5892-5896.
CrossRef Google scholar
[27.]
Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol, 2010, 101(1): S71-S74.
CrossRef Google scholar
[28.]
Zhao B, Zhang Y, Xiong K, Zhang Z, Hao X, Liu T. Effect of cultivation mode on microalgal growth and CO2 fixation. Chem Eng Res Des, 2011, 89(9): 1758-1762.
CrossRef Google scholar
[29.]
Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol, 2008, 19(5): 430-436.
CrossRef Google scholar
[30.]
O’Grady J, Schwender J, Shachar-Hill Y, Morgan JA. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies. J Exp Bot, 2012, 63(6): 2293-2308.
CrossRef Google scholar
[31.]
Dennis DT, Blakeley SD (2000) Carbohydrate metabolism. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville MD, pp 630–675
[32.]
Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, . Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two-dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol, 2004, 136(2): 3043-3057.
CrossRef Google scholar
[33.]
Sriram G, Iyer VV, Bruce Fulton D, Shanks JV. Identification of hexose hydrolysis products in metabolic flux analytes: A case study of levulinic acid in plant protein hydrolysate. Metab Eng, 2007, 9(5): 442-451.
CrossRef Google scholar
[34.]
Schwender J, Shachar-Hill Y, Ohlrogge JB. Mitochondrial metabolism in developing embryos of Brassica napus. J Biol Chem, 2006, 281(45): 34040-34047.
CrossRef Google scholar
[35.]
Allen DK, Shachar-Hill Y, Ohlrogge JB. Compartment-specific labeling information in 13C metabolic flux analysis of plants. Phytochem, 2007, 68(16): 2197-2210.
CrossRef Google scholar
[36.]
Lonien J, Schwender J. Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis. Plant Physiol, 2009, 151(3): 1617-1634.
CrossRef Google scholar
[37.]
Gerhardt R, Stitt M, Heldt HW. Subcellular metabolite determination in spinach leaves through non-aqueous fractionation. Physiol Chem, 1983, 364: 1130-1131.
[38.]
Masakapalli SK, Le Lay P, Huddleston JE, Pollock NL, Kruger NJ, Ratcliffe RG. Subcellular flux analysis of central metabolism in a heterotrophic Arabidopsis cell suspension using steady-state stable isotope labeling. Plant Physiol, 2010, 152(2): 602-619.
CrossRef Google scholar
[39.]
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, . Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J, 2008, 54(4): 621-639.
CrossRef Google scholar
[40.]
Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochem, 2002, 60(5): 497-503.
CrossRef Google scholar
[41.]
Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell, 2010, 9(4): 486-501.
CrossRef Google scholar
[42.]
Harris EH (2009) The Chlamydomonas sourcebook: introduction to Chlamydomonas and its laboratory use Vol. 1, Acad Press.
[43.]
Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell, 2009, 8(12): 1856-1868.
CrossRef Google scholar
[44.]
Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, . Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell, 2010, 9(8): 1251-1261.
CrossRef Google scholar
[45.]
Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, . Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol, 2011, 11(1): 7.
CrossRef Google scholar
[46.]
Moellering ER, Benning C. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell, 2010, 9(1): 97-106.
CrossRef Google scholar
[47.]
Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, . Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng, 2010, 12(4): 387-391.
CrossRef Google scholar
[48.]
Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J. TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol, 2012, 23(3): 352-363.
CrossRef Google scholar
[49.]
Liu B, Benning C. Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol, 2013, 24(2): 300-309.
CrossRef Google scholar
[50.]
Cagnon C, Mirabella B, Nguyen HM, Beyly-Adriano A, Bouvet S, Cuiné S, . Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii. Biotechnol Biofuels, 2013, 6(1): 178.
CrossRef Google scholar
[51.]
Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise. J Appl Phycol, 2008, 20(3): 245-251.
CrossRef Google scholar
[52.]
Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol, 2010, 85(2): 199-203.
[53.]
Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin: NADP + −oxidoreductase (FNR) enzymes in vitro. PNAS USA, 2011, 108(23): 9396-9401.
CrossRef Google scholar
[54.]
Park JH, Yoon JJ, Park HD, Kim YJ, Lim DJ, Kim SH. Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrogen Energy, 2011, 36(21): 13997-14003.
CrossRef Google scholar
[55.]
Shi X, Jung KW, Kim DH, Ahn YT, Shin HS. Direct fermentation of Laminaria japonica for biohydrogen production by anaerobic mixed cultures. Int J Hydrogen Energy, 2011, 36(10): 5857-5864.
CrossRef Google scholar
[56.]
Peers G. Increasing algal photosynthetic productivity by integrating ecophysiology with systems biology. Trends Biotechnol, 2014, 32(11): 551-555.
CrossRef Google scholar
[57.]
Sage RF, Sage TL, Kocacinar F. Photorespiration and evolution of C4 photosynthesis. Annu Rev Plant Biol, 2012, 63: 19-47.
CrossRef Google scholar
[58.]
Wang L, Czedik-Eysenberg A, Mertz RA, Si Y, Tohge T, Nunes-Nesi A, . Comparative analysis of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat Biotechnol, 2014, 32(11): 1158-1165.
CrossRef Google scholar
[59.]
Ducat DC, Silver PA. Improving carbon fixation pathways. Curr Opin Chem Bol, 2012, 16: 337-344.
CrossRef Google scholar
[60.]
Savage DF, Afonso B, Chen AH, Silver PA. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science, 2010, 327: 1258-1261.
CrossRef Google scholar
[61.]
Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol, 2009, 27: 1177-1180.
CrossRef Google scholar
[62.]
Genkov T, Meyer M, Griffiths H, Spreitzer RJ. Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbsC cDNA for expression in Chlamidomonas. J Biol Chem, 2010, 285: 19833-19841.
CrossRef Google scholar
[63.]
Banti V, Giuntoli B, Gonzali S, Loreti E, Magneschi L, Novi G, . Low oxygen response mechanisms in green organisms. Int J Mol Sci, 2013, 14: 1-30.
CrossRef Google scholar
[64.]
Geigenberger P. Response of plant metabolism to too little oxygen. Curr Opin Plant Biol, 2003, 6: 247-256.
CrossRef Google scholar
[65.]
Veyel D, Erban A, Fehrle I, Kopka J, Schroda M. Rationals and approaches for studying metabolism in eukaryotic microalgae. Metabolites, 2014, 4: 184-217.
CrossRef Google scholar
[66.]
Mettler T, Mühlhaus T, Hemme D, Schöttler MA, Rupprecht J, Idoine A, . Systems analysis of the response of photosynthesis, metabolism and growth to an increase in irradiance in the photosynthetic model organism Chlamydomonas reinhardtii. Plant Cell, 2014, 26: 2310-2350.
CrossRef Google scholar
[67.]
Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J, 2000, 6(2): 87-102.
CrossRef Google scholar
[68.]
Quintana N, van der Kooy F, van der Rhee MD, Voshol GP, Verpoorte R. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol, 2011, 91: 471-490.
CrossRef Google scholar
[69.]
Pearce J, Leach CK, Carr NG. The incomplete tricarboxylic acid cycle in the blue–green alga Anabaena variabilis. J Gen Microbiol, 1969, 55: 371-378.
CrossRef Google scholar
[70.]
Vazquez-Bermudex MF, Herrero A, Flores E. Uptake of 2-oxoglutarate in Synechococcus strain transformed with the Escherichia coli kgtP gene. J Bacteriol, 2000, 182: 211-215.
CrossRef Google scholar
[71.]
Pearce J, Carr NG. The metabolism of acetate by the blue–green algae, Anabaena variabilis and Anacystis nidulans. J Gen Microbiol, 1967, 49: 301-313.
CrossRef Google scholar
[72.]
Yang C, Hua Q, Shimizu K. Quantitative analysis of intracellular metabolic fluxes using GC-MS and two-dimensional NMR spectroscopy. J Biosci Bioeng, 2002, 93(1): 78-87.
CrossRef Google scholar
[73.]
Yang C, Hua Q, Shimizu K. Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab Eng, 2002, 4(3): 202-216.
CrossRef Google scholar
[74.]
Yang C, Hua Q, Shimizu K. Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis. Appl Microbiol Biotechnol, 2002, 58(6): 813-822.
CrossRef Google scholar
[75.]
Schwender J. Metabolic flux analysis as a tool in metabolic engineering of plants. Curr Opin Biotechnol, 2008, 19: 131-137.
CrossRef Google scholar
[76.]
Wiechert W, Noh K. From stationary to instationary metabolic flux analysis. Adv Biochem Eng Biotechnol, 2005, 92: 145-172.
[77.]
Young JD, Shastri AA, Stephanopoulos G, Morgan JA. Mapping photoautotrophic metabolism with isotopically nonstatinary 13C flux analysis. Metab Eng, 2011, 13: 656-665.
CrossRef Google scholar
[78.]
Colman B, Norman EG. Serine synthesis in cyanobacteria by a nonphotorespiratory pathway. Physiol Plant, 1997, 100: 133-136.
CrossRef Google scholar
[79.]
Owittrim GW, Colman B. Phosphoenolpyruvate carboxylase mediated carbon flow in a cyanobacterium. Biochem Cell Biol, 1988, 66: 93-99.
CrossRef Google scholar
[80.]
Bricker TM, Zhang S, Laborde SM, Mayer PR II, Frankel LK, Moroney JV. The malic enzyme is required for optimal photoautotrophic growth of Synechocystis sp. strain PCC6803 under continuous light but not under a diurnal light regimen. J Bacteriol, 2004, 186(23): 8144-8148.
CrossRef Google scholar
[81.]
StompM HJ, Voros L, Pick FR, Laamanen M, Haverkamp T, Stal LJ. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett, 2007, 10: 290-298.
CrossRef Google scholar
[82.]
Griffiths MJ, . Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol, 2009, 21: 493-507.
CrossRef Google scholar
[83.]
Klok AJ, Lamers PP, Martens DE, Draaisma RB, Wijffels RH. Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol, 2014, 32(10): 521-528.
CrossRef Google scholar
[84.]
Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, . Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell, 2013, 25: 4305-4323.
CrossRef Google scholar
[85.]
Flores E, Herrero A. Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem Soc Trans, 2005, 33: 164-167.
CrossRef Google scholar
[86.]
Valladares A, Montesinos ML, Herrero A, Flores E. An ABC-type, high-affinity urea permease identified in cyanobacteria. Mol Microbiol, 2002, 43: 703-715.
CrossRef Google scholar
[87.]
Garcia-Fernandez JM, de Marsac NT, Diez J. Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol Mol Biol Rev, 2004, 68: 630-638.
CrossRef Google scholar
[88.]
Allen MM. Cyanobacterial cell inclusions. Annu Rev Microbiol, 1984, 38: 1-25.
CrossRef Google scholar
[89.]
Li H, Sherman DM, Bao S, Sherman LA. Pattern of cyanophycin accumulation in nitrogen-fixing and non-nitrogen-fixing cyanobacteria anobacteria. Arch Microbiol, 2001, 176: 9-18.
CrossRef Google scholar
[90.]
Grossman AR, Schaefer MR, Chiang GG, Collier JL. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev, 1993, 57: 725-749.
[91.]
Dong HP, Williams E, Wang DZ, Xie ZX, Hsia RC, Jenck A, . Responses of Nanochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol, 2013, 162: 1110-1126.
CrossRef Google scholar
[92.]
Li H, Sherman LA. Characterization of Synechocystis sp. Strain PCC6803 and deltanbl mutants under nitrogen-deficient conditions. Arch Microbiol, 2002, 178: 256-266.
CrossRef Google scholar
[93.]
Baier K, Nicklisch S, Grundner C, Reinecke J, Lockau W. Expression of two nblA-homologous genes required for phycobilisome degradation in nitrogen-starved Synechocystis sp. PCC6803. FEMS Microbiol Lett, 2001, 195: 35-39.
CrossRef Google scholar
[94.]
Kiyota H, Yokota-Hirai M, Ikeuchi M. NblA1/A2-dependent homeostasis of amino acid pools during nitrogen starvation in Synechocystis sp. PCC6803. Metabolites, 2014, 4: 517-531.
CrossRef Google scholar
[95.]
Schwarz D, Orf I, Kopla J, Hagemann M. Effects of inorganic carbon limitation on the metabolome of the Synechocystis sp. PCC6803 mutant defective in glnB encoding the central regulator PII of cyanocacterial C/N acclimation. Metabolites, 2014, 4: 232-247.
CrossRef Google scholar
[96.]
Azuma M, Osanai T, Hirai MY, Tanaka K. A response regulator Rre37 and an RNA polymerase sigma factor SigE represent two parallel pathways to activate sugar catabolism in a cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol, 2011, 52: 404-412.
CrossRef Google scholar
[97.]
Ehira S, Ohmori M. NrrA directly regulates expression of hetR during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol, 2006, 188: 8520-8525.
CrossRef Google scholar
[98.]
Liu D, Yang C. The nitrogen-regulated response regulator NrrA controls cyanophicin synthesis and glycogen catabolism in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem, 2014, 289(4): 2055-2071.
CrossRef Google scholar
[99.]
Krasikov V, von Wobeser AE, Dekker HL, Huisman J, Matthijs HC. Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803. Physiol Plant, 2012, 145: 426-439.
CrossRef Google scholar
[100.]
Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol Adv, 2013, 31: 1532-1542.
CrossRef Google scholar
[101.]
Miyake M, Kataoka K, Shirai M, Asada Y. Control of poly-β-hydroxybutyrate synthase mediated by acetyl phosphate in cyanobacteria. J Bacteriol, 1997, 179: 5009-503.
[102.]
Hauf W, Schlebusch M, Huge J, Kopka J, Hagemann M, Forchhammer K. Metabolic changes in Synechocystis PCC6803 upon nitrogen-starvation: Excess NADPH sustains polyhydroxybutyrate accumulation. Metabolites, 2013, 3: 101-118.
CrossRef Google scholar
[103.]
Muro-Pastor AM, Herrero A, Flores E. Nitrogen-regulated group 2 sigma factor from Synechocystis sp. Strain PCC6803 involved in survival under nitrogen stress. J Bacteriol, 2001, 183: 1090-1095.
CrossRef Google scholar
[104.]
Osanai T, Kanesaki Y, Nakano T, Takahashi H, Asayama M, Shirai M, . Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor sigE. J Biol Chem, 2005, 280: 30653-30659.
CrossRef Google scholar
[105.]
Osanai T, . Genetic engineering of group 2 sigma factor SigE widely activates expressions of sugar catabolic genes in Synechocystis sp. PCC 6803. J Biol Chem, 2011, 286: 30962-30971.
CrossRef Google scholar
[106.]
Osanai T, Numata K, Oikawa A, Kuwahara A, Iijima H, Doi Y, . Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC6803. DNA Res, 2013, 20: 525-535.
CrossRef Google scholar
[107.]
Osanai T, Kuwahara A, Iijima H, Toyooka K, Sato M, Tanaka K, . Pleiotropic effect of sigE over-expression on cell morphorogy, photosynthesis, and hydrogen production in Synechocystis sp. PCC6803. Plant J, 2013, 76: 456-465.
CrossRef Google scholar
[108.]
Wada N, Sakamoto T, Matsugo S. Multiple roles of photosynthetic and sunscreen pigments in cyanobacteria focusing on the oxidative stress. Metabolites, 2013, 3: 463-483.
CrossRef Google scholar
[109.]
Reijnders MJMF, van Heck RGA, Lam CMC, Scaife MA, Martins dos Santos VAP, Smith AG, . Green genes: bioinformatics and systems-biology innovations drive algal biotechnology. Trends Biotechnol, 2014, 32(12): 617-626.
CrossRef Google scholar
[110.]
Poolman MG, Fell DA, Thomas S. Modeling photosynthesis and its control. J Exp Bot, 2000, 51: 319-328.
CrossRef Google scholar
[111.]
Poolman MG, Olcer H, Lloyd JC, Raines CA, Fell DA. Computer modeling and experimental evidence for two steady states in the photosynthetic Carbin cycle. Eur J Biochem, 2001, 268: 2810-2816.
CrossRef Google scholar
[112.]
Garcia-Camacho F, Sanchez-Miron A, Morina-Grima E, Camacho-Rubio F, Merchuck JC. A mechanistic model of photosynthesis in microalgae including photoacclimation dynamics. J Theor Biol, 2012, 304: 1-15.
CrossRef Google scholar
[113.]
Camacho-Rubio F, Garcia-Camacho F, Fernandez-Sevilla JM, Chisty Y, Grima E. A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng, 2003, 81: 459-473.
CrossRef Google scholar
[114.]
Gerin S, Mathy G, Franck F. Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression. BMC Sys Biol, 2014, 8: 96.
CrossRef Google scholar
[115.]
Kliphuis AMJ, Klok AJ, Martens DE, Lamers PP, Janssen M, Wijffels RH. Metabolic modeling of Chlamydomonas reinhardtii: Energy requirements for autotrophic growth and maintenance. J Appl Phycol, 2012, 24: 253-266.
CrossRef Google scholar
[116.]
Cogne G, Rugen M, Bockmayr A, Titica M, Dussap C-G, Cornet J-F, . A model-based method for investigating bioenergetics processes in autotrophically growing eukaryotic microalgae: Application to the green algal Chlamydomonas reinhardtii. Biotechnol Prog, 2011, 27(3): 631-640.
CrossRef Google scholar
[117.]
Boyle NR, Morgan JA. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Sys Biol, 2009, 3: 4.
CrossRef Google scholar
[118.]
Chang RL, Ghamsari L, Manichaikul A, Hom EFY, Balaji S, Fu W, . Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Sys Biol, 2011, 7: 518.
CrossRef Google scholar
[119.]
de Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW, Nielsen LK (2011) AlgaGEM^a genome-scale metabolic reconstruction of algae based on the Chalamydomonas reinhardtii genome. BMC Genomics 12: (Suppl 4) S5
[120.]
Knoop H, Grundel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R (2013). Flux balance analysis of cyanobacterial metabolism: The metabolic network of Synechocyctis sp. PCC6803. Plos Comp Biol;9(6): 21003081
[121.]
Triana J, Montagud A, Siurana M, Fuente D, Urchueguia A, Gamermann D, . Generation and evaluation of a genome-scale metabolic network model of Synechococcus elongatus PCC7942. Metabolites, 2014, 4: 680-698.
CrossRef Google scholar
[122.]
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, . Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res, 2008, 1(1): 20-43.
CrossRef Google scholar
[123.]
Lacour T, Sciandra A, Talec A, Mayzaud P, Bernard O. Disel variations of carbohydrates and neutral lipids in nitrogen-sufficient and nitrogen-starved cyclostat cultures of Isochrysis sp. 1. J Geophys Res, 2012, 48(4): 966-975.
[124.]
Kilian O, Benemann CS, Niyogi KK, Vick B. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. PNAS USA, 2011, 108(52): 21265-21269.
CrossRef Google scholar
[125.]
Singh A, Nigam PS, Murphy JD. Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol, 2011, 102(1): 10-16.
CrossRef Google scholar
[126.]
James CN, Horn PJ, Case CR, Gidda SK, Zhang D, Mullen RT, . Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants. PNAS USA, 2010, 107(41): 17833-17838.
CrossRef Google scholar
[127.]
Dexter J, Fu PC. Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci, 2009, 2: 857-864.
CrossRef Google scholar
[128.]
Dienst D, Georg J, Abts T, Jakorew L, Kuchmina E, Borner T, Wilde A, Duhring U, Enke H, Hess WR (2014) Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechosystis sp. PCC6803. Biotechnol for Biofuels 7:21
[129.]
Atsumi S, Liao JC. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol, 2008, 74: 7802-7808.
CrossRef Google scholar
[130.]
Shen CR, Liao JC. Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC 7942 and characterization of the native acetohydroxyacid synthase. Energy Environ Sci, 2012, 5: 9574.
CrossRef Google scholar
[131.]
Lan EI, Liao JC. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng, 2011, 13: 353-363.
CrossRef Google scholar
[132.]
Lan EI, Liao JC. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. PNAS USA, 2012, 109: 6018-6023.
CrossRef Google scholar
[133.]
Wang Y, Shi M, Niu X, Zhang X, Gao L, Chen L, . Metabolomic evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC6803. Microb Cell Fact, 2014, 13: 151.
CrossRef Google scholar
[134.]
Datta R, Henry M. Recent advances in products, processes and technologies-a review. J Chem Technol Biotechnol, 2006, 81: 1119-1129.
CrossRef Google scholar
[135.]
Niederholtmeyer H, Wolfstadter BT, Savage DF, Silver PA, Way JC. Engineering cyanobacteria to synthesize and export hydrophilic products. Appl Environ Microbiol, 2010, 76: 3462-3466.
CrossRef Google scholar
[136.]
Angermayr SA, van der Woude AD, Correddu D, Vreugdenhil A, Verrone V, Hellingwerf KJ (2014) Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechosystis sp. PCC6803. Biotechnol for Biofuels 7:99
[137.]
Richter N, Zienert A, Hummel W. A single-point mutation enables lactate dehydrogenage from Bacillus subtilis to utilize NAD+ and NADP+ as cofactor. Eng Lif Sci, 2011, 11: 26-36.
CrossRef Google scholar
[138.]
Lindberg P, Park S, Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng, 2010, 12: 70-79.
CrossRef Google scholar
[139.]
Ungerer J, Tao L, Davis M, Ghirardi M, Maness PC, Yu JP. Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy Environ Sci, 2012, 5: 8998-9006.
CrossRef Google scholar
[140.]
Gao Q, Wang W, Zhao H, Lu X (2012). Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnol for Biofuels; 5:17
[141.]
Liu X, Fallon S, Sheng J, Curtiss R 3rd. CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass. PNAS USA, 2011, 108: 6905-6908.
CrossRef Google scholar
[142.]
Liu X, Sheng J, Curtiss R 3rd. Fatty acid production in genetically modified cyanobacteria. PNAS USA, 2011, 108: 6899-6904.
CrossRef Google scholar
[143.]
Tan X, Yao L, Gao Q, Wang W, Qi F, Lu X. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab Eng, 2011, 13: 169-176.
CrossRef Google scholar
[144.]
Sivakumar G, Xu J, Thompson RW, Yang Y, Randol-Smith P, Weathers PJ. Integrated green algal technology for bioremediation and biofue. Bioresour Technol, 2012, 107: 1-9.
CrossRef Google scholar
[145.]
Rasala BA, Chao S-S, Pier M, Barrera DJ, Mayfield SP. Enhanced genetic tools for engineering multigene traits into green algae. PLoS One, 2014, 9(4): e94028.
CrossRef Google scholar
[146.]
Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors. Biotechnol Biofuels, 2012, 5: 18.
CrossRef Google scholar
[147.]
Anandarajah K, Mahendraperumal G, Sommerfeld M, Hu Q. Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels. Appl Energy, 2012, 96: 371-377.
CrossRef Google scholar
[148.]
Zhou J, Zhang H, Zhang Y, Li Y, Ma Y. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab Eng, 2012, 14: 394-400.
CrossRef Google scholar
[149.]
Mendez-Perez D, Begemann MB, Pfleger BF. Modular synthase-encoding gene involved in alpha-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol, 2011, 77: 4264-4267.
CrossRef Google scholar
[150.]
Gunther A, Jakob T, Goss R, Konig S, Spindler D, Rabiger N, . Methane production from glycolate excreting algae as a new concept in the production of biofuels. Bioresour Technol, 2012, 121: 454-457.
CrossRef Google scholar
[151.]
Kobayashi J, Hasegawa S, Ito K, Yoshimune K, Komoriya T, Asada A, . Expression of aldehyde dehydrogenase gene increases hydrogen production from low concentration of acetate by Rhodobacter sphaeroides. Int J Hydrogen Energy, 2012, 37: 9602-9609.
CrossRef Google scholar
[152.]
Lo SC, Shih SH, Chang JJ, Wang CY, Huang CC. Enhancement of photoheterotrophic biohydrogen production at elevated temperatures by the expression of a thermophilic clostridial hydrogenase. Appl Microbiol Biotechnol, 2012, 95: 969-977.
CrossRef Google scholar
[153.]
Ducat DC, Sachdeva G, Silver PA. Rewiring hydrogenase-dependent redox circuits in cyanobacteria. PNAS USA, 2011, 108: 3941-3946.
CrossRef Google scholar
[154.]
Ananyev GM, Skizim NJ, Dismukes GC. Enhancing biological hydrogen production from cyanobacteria by removal of excreted products. J Biotechnol, 2012, 162: 97-104.
CrossRef Google scholar
[155.]
Havel J, Weuster-Botz D. Cofactor regeneration in phototrophic cyanobacteria applied for asymmetric reduction of ketones. Appl Microbiol Biotechnol, 2007, 75: 1031-1037.
CrossRef Google scholar
[156.]
Nakamura K, Tohi YR, Hamada KH. Cyanobacterium-catalyzed asymmetric reduction of ketones. Tetrahedron Lett, 2000, 41: 6799-6802.
CrossRef Google scholar
[157.]
Yang ZH, Luo L, Chang X, Zhou W, Chen GH, Zhao Y, . Production of chiral alcohols from prochiral ketones by microalgal photo-biocatalytic asymmetric reduction reaction. J Ind Microbiol Biotechnol, 2012, 39: 835-841.
CrossRef Google scholar
[158.]
Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol, 2010, 22: 43-50.
CrossRef Google scholar
[159.]
Kepekci RA, Saygideger SD. Enhancement of phenolic compound production in Spirulina platensis by two-step batch mode cultivation. J Appl Phycol, 2012, 24: 897-905.
CrossRef Google scholar
[160.]
Leema JT, Kirubagaran R, Vinithkumar NV, Dheenan PS, Karthikayulu S. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresour Technol, 2010, 101: 9221-9227.
CrossRef Google scholar
[161.]
Reinsvold RE, Jinkerson RE, Radakovits R, Posewitz MC, Basu C. The production of the sesquiterpene beta-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. J Plant Physiol, 2011, 168: 848-852.
CrossRef Google scholar
[162.]
Wang GS, Grammel H, Abou-Aisha K, Sagesser R, Ghosh R. High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol, 2012, 78: 7205-7215.
CrossRef Google scholar
[163.]
Ducat DC, Avelar-Rivas JA, Way JC, Silver PA. Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol, 2012, 78: 2660-2668.
CrossRef Google scholar
[164.]
Haase SM, Huchzermeyer B, Rath T. PHB accumulation in Nostoc muscorum under different carbon stress situations. J Appl Phycol, 2012, 24: 157-162.
CrossRef Google scholar
[165.]
Tyo KE, Jin YS, Espinoza FA, Stephanopoulos G. Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803. Biotechnol Prog, 2009, 25: 1236-1243.
CrossRef Google scholar
[166.]
Aikawa S, Izumi Y, Matsuda F, Hasunuma T, Chang JS, Kondo A. Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol, 2012, 108: 211-21.
CrossRef Google scholar
[167.]
Razon LF. Life cycle energy and greenhouse gas profile of a process for the production of ammonium sulfate from nitrogen-fixing photosynthetic cyanobacteria. Bioresour Technol, 2012, 107: 339-346.
CrossRef Google scholar
[168.]
Carlozzi P, Buccioni A, Minieri S, Pushparaj B, Piccardi R, Ena A, . Production of bio-fuels (hydrogen and lipids) through a photofermentation process. Bioresour Technol, 2010, 101(9): 3115-3120.
CrossRef Google scholar
[169.]
Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol, 2011, 102(1): 71-81.
CrossRef Google scholar
[170.]
Lam MK, Lee KT. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv, 2012, 30(3): 673-690.
CrossRef Google scholar
[171.]
Xu L, Weathers PJ, Xiong XR, Liu CZ. Microalgal bioreactors: challenges and opportunities. Eng Life Sci, 2009, 9(3): 178-189.
CrossRef Google scholar
[172.]
Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG. Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel, 2010, 24(7): 4062-4077.
CrossRef Google scholar
[173.]
Rosenberg J, Oyler G, Wilkinson L, Betenbaugh M. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Biotechnol, 2008, 19: 430-436.
[174.]
Ono E, Cuello JL. Design parameters of solar concentration systems for CO2 mitigating algal photobioreactors. Energy, 2004, 29: 1651-1657.
CrossRef Google scholar
[175.]
Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv, 2011, 29(6): 686-702.
CrossRef Google scholar
[176.]
Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, . Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol, 2012, 110: 496-502.
CrossRef Google scholar
[177.]
Renault F, Sancey B, Badot PM, Crini G. Chitosan for coagulation/flocculation processes–an eco-friendly approach. Eur Polymer J, 2009, 45(5): 1337-1348.
CrossRef Google scholar
[178.]
de Godos I, Guzman HO, Soto R, García-Encina PA, Becares E, Muñoz R, . Coagulation/flocculation-based removal of algal–bacterial biomass from piggery wastewater treatment. Bioresour Technol, 2011, 102(2): 923-927.
CrossRef Google scholar
[179.]
Moreno-Garrido I. Microalgae immobilization: current techniques and uses. Bioresour Technol, 2008, 99(10): 3949-3964.
CrossRef Google scholar
[180.]
Moreira SM, Moreira-Santos M, Guilhermino L, Ribeiro R. Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: Bead stability and suitability. Enz Microbiol Technol, 2006, 38(1): 135-141.
CrossRef Google scholar
[181.]
Ertuğrul S, Bakır M, Dönmez G. Treatment of dye-rich wastewater by an immobilized thermophilic cyanobacterial strain: Phormidium sp. Ecol Eng, 2008, 32(3): 244-248.
CrossRef Google scholar
[182.]
Guedri H, Durrieu C. A self-assembled monolayers based conductometric algal whole cell biosensor for water monitoring. Microchim Acta, 2008, 163(3–4): 179-184.
CrossRef Google scholar
[183.]
Mallick N (2006) Immobilization of microalgae. In Immobilization of Enzymes and Cells (pp. 373–391). Humana Press.
[184.]
Pérez-Martínez C, Sánchez-Castillo P, Jiménez-Pérez MV. Utilization of immobilized benthic algal species for N and P removal. J Appl Phycol, 2010, 22(3): 277-282.
CrossRef Google scholar
[185.]
Ruiz-Marin A, Mendoza-Espinosa L. Ammonia removal and biomass characteristics of alginate-immobilized Scenedesmus obliquus cultures treating real wastewater. Fresenius Environ Bull, 2008, 17: 1236-1241.
[186.]
Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol, 2010, 101(1): 58-64.
CrossRef Google scholar
[187.]
Ranjan A, Patil C, Moholkar VS. Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res, 2010, 49(6): 2979-2985.
CrossRef Google scholar
[188.]
Sander K, Murthy GS. Life cycle analysis of algae biodiesel. Int J Life Cycle Assess, 2010, 15(7): 704-714.
CrossRef Google scholar
[189.]
Rawat I, Ranjith Kumar R, Mutanda T, Bux F. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy, 2011, 88(10): 3411-3424.
CrossRef Google scholar
[190.]
Amaro HM, Guedes A, Malcata FX. Advances and perspectives in using microalgae to produce biodiesel. Appl Energy, 2011, 88(10): 3402-3410.
CrossRef Google scholar
[191.]
Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M. Comparison of several methods for effective lipid extraction from microalgae. Biores Technol, 2010, 101: 575-577.
[192.]
Young G, Nippgen F, Titterbraudt S, Cooney MJ. Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol, 2010, 72: 118-121.
CrossRef Google scholar
[193.]
Kim YH, Choi YK, Park J, Lee S, Yang YH, Kim HJ, . Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol, 2012, 109: 312-315.
CrossRef Google scholar
[194.]
Pragya N, Pandey KK, Sahoo PK. A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev, 2013, 24: 159-171.
CrossRef Google scholar
[195.]
Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta, 2003, 356: 328-334.
CrossRef Google scholar
[196.]
Sawangkeaw R, Bunyakiat K, Ngamprasertsith S. A review of laboratory-scale research on lipid conversion to biodiesel with supercritical methanol (2001–2009). J Supercrit Fluids, 2010, 55(1): 1-13.
CrossRef Google scholar
[197.]
Jaime L, Mendiola JA, Ibáñez E, Martin-Álvarez PJ, Cifuentes A, Reglero G, . β-Carotene isomer composition of sub-and supercritical carbon dioxide extracts. Antioxidant activity measurement. J Agric Food Chem, 2007, 55(26): 10585-10590.
CrossRef Google scholar
[198.]
Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S, . Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J Chem Technol Biotechnol, 2009, 84(5): 657-661.
CrossRef Google scholar
[199.]
Macías‐Sánchez MD, Mantell Serrano C, Rodríguez Rodríguez M, de la Martínez Ossa E, Lubián LM, Montero O. Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. J Sep Sci, 2008, 31(8): 1352-1362.
CrossRef Google scholar
[200.]
Ota M, Watanabe H, Kato Y, Watanabe M, Sato Y, Smith RL, . Carotenoid production from Chlorococcum littorale in photoautotrophic cultures with downstream supercritical fluid processing. J Sep Sci, 2009, 32(13): 2327-2335.
CrossRef Google scholar
[201.]
Ehimen EA, Sun ZF, Carrington CG. Variables affecting the in situ transesterification of microalgae lipids. Fuel, 2010, 89(3): 677-684.
CrossRef Google scholar
[202.]
Zhu LY, Zong MH, Wu H. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresou Technol, 2008, 99(16): 7881-7885.
CrossRef Google scholar
[203.]
Ziino M, Lo Curto RB, Salvo F, Signorino D, Chiofalo B, Giuffrida D. Lipid composition of Geotrichum candidum single cell protein grown in continuous submerged culture. Bioresour Technol, 1999, 67(1): 7-11.
CrossRef Google scholar
[204.]
Schuchardt U, Sercheli R, Vargas RM. Transesterification of vegetable oils: a review. J Braz Chem Soc, 1998, 9(3): 199-210.
CrossRef Google scholar
[205.]
Wahlen BD, Willis RM, Seefeldt LC. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol, 2011, 102(3): 2724-2730.
CrossRef Google scholar
[206.]
Du W, Xu YY, Zeng J, Liu DH. Novozym 435‐catalysed transesterification of crude soya bean oils for biodiesel production in a solvent‐free medium. Biotechnol Appl Biochem, 2004, 40(2): 187-190.
CrossRef Google scholar
[207.]
Heeres AS, Picone CSF, van der Wielen LAM, Cunha RL, Cuellar MC. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol, 2014, 32(4): 221-229.
CrossRef Google scholar
[208.]
Zhang S, Bryant DA. The tricarboxylic acid cycle in cyanobacteria. Science, 2011, 334: 1551-1553.
CrossRef Google scholar
[209.]
Steinhauser D, Fernie AR, Araujo WL. Unusual cyanobacterial TCA cycles: not broken just different. Trends Plant Sci, 2012, 17(9): 503-509.
CrossRef Google scholar
[210.]
Deng M-D, Coleman JR. Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol, 1999, 65(2): 523-528.
[211.]
Yao L, Qi F, Tan X, Lu X. Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnol Biofuels, 2014, 7: 94.
CrossRef Google scholar
[212.]
Wang W, Liu X, Lu X. Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels, 2013, 6: 69.
CrossRef Google scholar
[213.]
McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC. Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol, 2010, 76(15): 5032-5038.
CrossRef Google scholar
[214.]
Angelmyr SA, Paszota M, Hellingwerf KJ. Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol, 2012, 78: 7098-7106.
CrossRef Google scholar
[215.]
Varman AM, Yu Y, You L, Tan YJ. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb Cell Fact, 2013, 12: 117.
CrossRef Google scholar
[216.]
Li H, Liao JC. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microb Cell Fact, 2013, 12: 4.
CrossRef Google scholar
[217.]
Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR. Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PLoS One, 2012, 7(11): e50470.
CrossRef Google scholar
[218.]
Sakai M, Ogawa T, Matsuoka M, Fukuda H. Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbpors a gene for the ethylene-forming enzyme of Pseudomonas syringae. J Ferm Bioeng, 1997, 84(5): 4343-443.
CrossRef Google scholar
[219.]
Takahama K, Matsuoka M, Nagahama K, Ogawa T. Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus, J. Biosci Bioeng, 2003, 95(3): 302-305.
CrossRef Google scholar
[220.]
Wang B, Pugh S, Nielsen DR, Zhang W, Meldrum DR. Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng, 2013, 16: 68-77.
CrossRef Google scholar

11

Accesses

40

Citations

Detail

Sections
Recommended

/