Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism

Yu Matsuoka, Kazuyuki Shimizu

Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 4.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 4. DOI: 10.1186/s40643-014-0031-7
Review

Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism

Author information +
History +

Abstract

It becomes more and more important to develop appropriate models for the efficient design of the cell factory for microbial biofuels and biochemical productions, since the appropriate model can predict the effect of culture environment and/or the specific pathway genes knockout on the growth characteristics. Among various modeling approaches, kinetic modeling is promising in the sense of realizing the essential feature of metabolic regulation. A brief overview is given for the current status of the kinetic modeling of the cell metabolism from the point of view of metabolic regulation focusing on Escherichia coli (but not limited to E. coli). For the proper modeling, it is important to realize the systems behavior by integrating different levels of information to understand and unravel the underlying principles of the living organisms, namely, it is important to properly understand how the environmental stimuli are detected by the cell, how those are transduced, and how the cell metabolism is regulated, and to express these into the model. In particular, it is important to incorporate the enzymatic regulations of Pyk, Pfk, and Ppc by fructose-1,6-bisphosphate (FBP), phosphoenol pyruvate (PEP), and acetyl-coenzyme A (AcCoA) to realize the flux-sensing and homeostatic behavior. The proper modeling for phosphotransferase system (PTS) and the transcriptional regulation by cAMP-Crp and Cra is also important to simulate the main metabolism in relation to catabolite regulation. The coordinated regulation between catabolic and anabolic (nitrogen source-assimilation) metabolisms may be simulated by the behavior of keto acid such as α-ketoglutarate (αKG). The metabolism under micro-aerobic conditions may be made by incorporating the global regulators such as ArcA/B and Fnr. It is quite important to develop quantitative kinetic models, which incorporate enzyme level and gene level regulations from the biological science and metabolic engineering points of view.

Keywords

Virtual microbe / Systems biology / Kinetic model / Metabolic regulation / Metabolic engineering / Dynamics / Metabolism / Escherichia coli

Cite this article

Download citation ▾
Yu Matsuoka, Kazuyuki Shimizu. Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism. Bioresources and Bioprocessing, 2015, 2(1): 4 https://doi.org/10.1186/s40643-014-0031-7

References

[1.]
Shimizu K. Microbial production of biofuels and biochemicals from biomass, 2014, Co, New York: NOVA publ.
[2.]
Kitano H. Systems biology: a brief overview. Science, 2002, 295: 1662-1664.
CrossRef Google scholar
[3.]
Kitano H. Computational systems biology. Nature, 2002, 420: 206-210.
CrossRef Google scholar
[4.]
Stelling J. Mathematical models in microbial systems biology. Curr Opin Microbiol, 2004, 7: 513-518.
CrossRef Google scholar
[5.]
Kotte O, Zaugg JB, Heinemann M. Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Sys Biol, 2010, 6: 355.
[6.]
Vemuri GN, Aristidou A. Metabolic engineering in the -omics era: elucidating and modulating regulatory networks. Microbiol Mol Biol Rev, 2005, 69: 197-216.
CrossRef Google scholar
[7.]
Shimizu K. Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites, 2014, 4: 1-35.
CrossRef Google scholar
[8.]
Matsuoka Y, Shimizu K. Metabolic regulation in Escherichia coli in response to culture environments via global regulators. Biotechnol J, 2011, 6: 1330-1341.
CrossRef Google scholar
[9.]
Chuvukov V, Gerosa L, Kochanowski K, Sauer U. Coordination of microbial metabolism. Nat Rev, 2014, 12: 327-340.
[10.]
Selinger DW, Wright MA, Church GM. On the complete determination of biological systems. Trends Biotechnol, 2003, 21: 251-254.
CrossRef Google scholar
[11.]
Machado D, Costa R, Rocha M, Ferreira E, Tidor B, Rocha I. Modeling formalisms in systems biology. AMP Expre, 2011, 1: 1-34.
CrossRef Google scholar
[12.]
Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M. Kinetic models in industrial biotechnology-improving cell factory performance. Metabolic Eng, 2014, 24: 38-60.
CrossRef Google scholar
[13.]
Costa RS, Machado D, Rocha I, Pereira EC. Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modeling. IET Syst Biol, 2011, 5: 157-163.
CrossRef Google scholar
[14.]
Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG. Systems biology: parameter estimation for biochemical models. FEBS J, 2009, 276: 886-902.
CrossRef Google scholar
[15.]
Cvijovic M, Bordel S, Nielsen J. Mathematical models of cell factories: moving towards the core of industrial biotechnology. Microb Biotechnol, 2011, 4: 572-584.
CrossRef Google scholar
[16.]
Sauer U. Metabolic networks in motion: 13C-based flux analysis. Mol Syst Anal, 2006, 2: 62.
[17.]
Long CP, Antoniewicz MR. Metabolic flux analysis of Escherichia coli knockouts: lessons from the Keio collection and future outlook. Curr Opin Biotechnol, 2014, 28: 127-133.
CrossRef Google scholar
[18.]
Quek LE, Nielsen LK (2014) Steady-State 13C Fluxomics Using OpenFLUX. In: Krömer JO, Nielsen LK, Blank LM (eds) Metabolic flux analysis: methods and protocols, vol. 1191, Springer, New York, 209-224
[19.]
Shimizu K. Metabolic flux analysis based on 13C-labeling experiments and integration of the information with gene and protein expression patterns. Adv Biochem Eng Biotechnol, 2004, 91: 1-49.
[20.]
Shimizu K. Bacterial cellular metabolic systems, 2013, Oxford: Woodhead Publ Ltd.
CrossRef Google scholar
[21.]
Matsuoka Y, Shimizu K (2014) 13C-Metabolic flux analysis for Escherichia coli. In: Krömer JO, Nielsen LK, Blank LM (eds) Metabolic flux analysis: methods and protocols, vol. 1191, Springer, New York, 261-289
[22.]
Shimizu K. Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information. Biochem Eng J, 2009, 46: 235-251.
CrossRef Google scholar
[23.]
Wittman C. Fluxome analysis using GC-MS. Microb Cell Fact, 2007, 6: 6.
CrossRef Google scholar
[24.]
Herrgard MJ, Lee B-S, Portnoy V, Palsson BO. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res, 2006, 16: 627-635.
CrossRef Google scholar
[25.]
O'Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Sys Biol, 2013, 9: 693.
CrossRef Google scholar
[26.]
Schuetz R, Kuepfer SU. Systematic evaluation of objective functions forpredicting intracellular fluxes in Escherichia coli. Mol Syst Biol, 2007, 3: 119.
CrossRef Google scholar
[27.]
Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U. Multidimensional optimality of microbial metabolism. Science, 2012, 336: 601-604.
CrossRef Google scholar
[28.]
Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng, 2003, 84: 647-657.
CrossRef Google scholar
[29.]
Pharkya P, Maranas CD. An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng, 2006, 8: 1-13.
CrossRef Google scholar
[30.]
Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. Plos Comput Biol, 2010, 6: e1000744.
CrossRef Google scholar
[31.]
Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M. OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol, 2010, 4: 45.
CrossRef Google scholar
[32.]
Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE, Omatu S, Corchado JM. Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS One, 2014, 9: e102744.
CrossRef Google scholar
[33.]
Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational framework for redesign of microbial production systems. Genom Res, 2014, 14: 2367-2376.
CrossRef Google scholar
[34.]
Yang L, Cluett WR, Mahadevan R. EMILiO: a fast algorithm for genome-scale strain design. Metab Eng, 2011, 13: 272-281.
CrossRef Google scholar
[35.]
Cotten C, Reed JL. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnol J, 2013, 8: 595-604.
CrossRef Google scholar
[36.]
Ibarra RU, Edwards JS, Palsson BO. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature, 2002, 420: 186-189.
CrossRef Google scholar
[37.]
Segrè D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A, 2002, 99: 15112-15117.
CrossRef Google scholar
[38.]
Rark JM, Kim TY, Lee SY. Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol Adv, 2009, 27: 979-988.
CrossRef Google scholar
[39.]
Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD. Mathematical optimization applications in metabolic networks. Metab Eng, 2012, 14: 672-686.
CrossRef Google scholar
[40.]
Covert MW, Xiao N, Chen TJ, Karr JR. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics, 2008, 24: 2044-2050.
CrossRef Google scholar
[41.]
Meadows AL, Karnik R, Lam H, Forestell S, Snedecor B. Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation. Metab Eng, 2010, 12: 150-160.
CrossRef Google scholar
[42.]
Feng X, Xu Y, Chen Y, Tang YJ. MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst Biol, 2012, 6: 94.
CrossRef Google scholar
[43.]
Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. Isme J, 2011, 5: 305-316.
CrossRef Google scholar
[44.]
Salimi F, Zhuang K, Mahadevan R. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol J, 2010, 5: 726-738.
CrossRef Google scholar
[45.]
Jamshidi N, Palsson . Formulating genome-scale kinetic models in the post-genome era. Mol Syst Biol, 2008, 4: 171.
CrossRef Google scholar
[46.]
Jamshidi N, Palsson . Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys J, 2010, 98: 175-185.
CrossRef Google scholar
[47.]
Smallbone K, Simeonidis E, Broomhead DS, Kell DB. Something from nothing - bridging the gap between constraint-based and kinetic modelling. FEBS J, 2007, 274: 5576-5585.
CrossRef Google scholar
[48.]
Smallbone K, Simeonidis E, Swainston N, Mendes P. Towards a genome-scale kinetic model of cellular metabolism. BMC Syst Biol, 2010, 4: 6.
CrossRef Google scholar
[49.]
Fleming RM, Thiele I, Provan G, Nasheuer HP. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. J Theor Biol, 2010, 264: 683-692.
CrossRef Google scholar
[50.]
Antoniewicz MR. Dynamic metabolic flux analysis-tools for probing transient states of metabolic networks. Curr Opin Biotechnol, 2013, 24: 973-978.
CrossRef Google scholar
[51.]
Hoffner K, Harwood SM, Barton PI. A reliable simulator for dynamic flux balance analysis. Biotechnol Bioeng, 2013, 110: 792-802.
CrossRef Google scholar
[52.]
Mahadevan R, Edwards JS, Doyle FJ. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J, 2002, 83: 1331-1340.
CrossRef Google scholar
[53.]
Hanly TJ, Henson MA. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng, 2011, 108: 376-385.
CrossRef Google scholar
[54.]
Hanly TJ, Urello M, Henson MA. Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Appl Microbiol Biotechnol, 2012, 93: 2529-2541.
CrossRef Google scholar
[55.]
Hanly TJ, Henson MA. Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol Biofuels, 2013, 6: 44.
CrossRef Google scholar
[56.]
Chowdhury A, Zomorrodi AR, Maranas CD. k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput Biol, 2014, 10: e1003487.
CrossRef Google scholar
[57.]
Klumpp S, Hwa T. Growth-rate dependent partitioning of RNA polymerases in bacteria. PNAS USA, 2008, 105: 20245-20250.
CrossRef Google scholar
[58.]
Klumpp S, Zhang Z, Hwa T. Growth-rate dependent global effects on gene expression in bacteria. Cell, 2009, 139: 1366-1375.
CrossRef Google scholar
[59.]
Valgepea K, Adamberg K, Seiman A, Vilu R. Escherichia coli achieves faster growth by increasing catalytic and translational rates of proteins. Mol Biosyst, 2013, 9: 2344-2358.
CrossRef Google scholar
[60.]
Harcomb WR, Delaney NF, Leiby N, Klitgord N, Marx CJ. The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum. PLoS Comput Biol, 2013, 9: e1003091.
CrossRef Google scholar
[61.]
Edwards JS, Covert MW, Palsson . Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol, 2002, 4: 133-140.
CrossRef Google scholar
[62.]
Karr JR, Sanghvi JC, Macklin DN, Gutschow MW, Jacobs JM, Bolival B Jr, Assad-Garcia N, Glass JI, Covert MW. A whole-cell computational model predicts phenotype from genotype. Cell, 2012, 150: 389-401.
CrossRef Google scholar
[63.]
Gunawardera J. Silicon dreams of cells into symbols. Nature, 2012, 30: 838-840.
[64.]
Freddolino PL, Tavazoie S. The dawn of virtual cell biology. Cell, 2012, 150: 248-250.
CrossRef Google scholar
[65.]
Tomita M. Whole-cell simulation: a grand challenge of the 21st century. Trends in Biotech, 2001, 19: 205-210.
CrossRef Google scholar
[66.]
Heinrich R, Rapoport TA. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem, 1974, 42: 89-95.
CrossRef Google scholar
[67.]
van Riel NA. Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief Bioinform, 2006, 7: 364-374.
CrossRef Google scholar
[68.]
Heijnen JJ. Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng, 2005, 91: 534-545.
CrossRef Google scholar
[69.]
Wu L, Wang WM, van Winden WA, van Gulik WM, Heijnen JJ. A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. Eur J Biochem, 2004, 271: 3348-3359.
CrossRef Google scholar
[70.]
del Rosario RCH, Mendoza E, Voit EO. Challenges in lin-log modelling of glycolysis in Lactococcus lactis. Iet Syst Biol, 2008, 2: 136-149.
CrossRef Google scholar
[71.]
Hatzimanikatis V, Emmerling M, Sauer U, Bailey JE. Application of mathematical tools for metabolic design of microbial ethanol production. Biotechnol Bioeng, 1998, 58: 154-161.
CrossRef Google scholar
[72.]
Wang L, Hatzimanikatis V. Metabolic engineering under uncertainty-II: analysis of yeast metabolism. Metab Eng, 2006, 8: 142-159.
CrossRef Google scholar
[73.]
Pozo C, Marín-Sanguino A, Alves R, Guillén-Gosálbez G, Jiménez L, Sorribas A. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models. BMC Syst Biol, 2011, 5: 137.
CrossRef Google scholar
[74.]
Sorribas A, Hernandez-Bermejo B, Vilaprinyo E, Alves R. Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Biotechnol Bioeng, 2007, 97: 1259-1277.
CrossRef Google scholar
[75.]
Liebermeister W, Klipp E. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model, 2006, 3: 41.
CrossRef Google scholar
[76.]
Kim JI, Song HS, Sunkara SR, Lali A, Ramkrishna D. Exacting predictions by cybernetic model confirmed experimentally: steady state multiplicity in the chemostat. Biotechnol Prog, 2012, 28: 1160-1166.
CrossRef Google scholar
[77.]
Covert MW, Palsson . Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem, 2002, 277: 28058-28064.
CrossRef Google scholar
[78.]
Covert MW, Palsson . Constraints-based models: regulation of gene expression reduces the steady-state solution space. J Theor Biol, 2003, 221: 309-325.
CrossRef Google scholar
[79.]
Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, Palsson . Metabolic modeling of microbial strains in silico. Trends Biochem Sci, 2001, 26: 179-186.
CrossRef Google scholar
[80.]
Herrgård MJ, Fong SS, Palsson . Identification of genome-scale metabolic network models using experimentally measured flux profiles. Plos Comput Biol, 2006, 2: 676-686.
[81.]
Song HS, Morgan JA, Ramkrishna D. Systematic development of hybrid cybernetic models: application to recombinant yeast co-consuming glucose and xylose. Biotechnol Bioeng, 2009, 103: 984-1002.
CrossRef Google scholar
[82.]
Ramkrishna D, Kompala DS, Tsao GT. Are microbes optimal strategists. Biotechnol Progr, 1987, 3: 121-126.
CrossRef Google scholar
[83.]
Varner J, Ramkrishna D. Metabolic engineering from a cybernetic perspective. 1. Theoretical preliminaries. Biotechnol Prog, 1999, 15: 407-425.
CrossRef Google scholar
[84.]
Young JD (2005) A system-level mathematical description of metabolic regulation combining aspects of elementary mode analysis with cybernetic control laws. PhD thesis, Purdue University
[85.]
Young JD, Henne KL, Morgan JA, Konopka AE, Ramkrishna D. Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control. Biotechnol Bioeng, 2008, 100: 542-559.
CrossRef Google scholar
[86.]
Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol, 2000, 18: 326-332.
CrossRef Google scholar
[87.]
Kim JW, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biocem Sci, 2005, 30: 142-150.
CrossRef Google scholar
[88.]
Kim JI, Varner JD, Ramkrishna D. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables. Biotechnol Prog, 2008, 24: 993-1006.
CrossRef Google scholar
[89.]
Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem, 2000, 267: 5313-5329.
CrossRef Google scholar
[90.]
Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol J, 2013, 8: 1043-1057.
CrossRef Google scholar
[91.]
Hatzimanikatis V, Bailey JE. MCA has more to say. J Theor Biol, 1996, 182: 233-242.
CrossRef Google scholar
[92.]
Smallbone K, Messiha HL, Carroll KM, Winder CL, Malys N, Dunn WB, Murabito E, Swainston N, Dada JO, Khan F, Pir P, Simeonidis E, Spasić I, Wishart J, Weichart D, Hayes NW, Jameson D, Broomhead DS, Oliver SG, Gaskell SJ, McCarthy JE, Paton NW, Westerhoff HV, Kell DB, Mendes P. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Lett, 2013, 587: 2832-2841.
CrossRef Google scholar
[93.]
Stanford NJ, Lubitz T, Smallbone K, Klipp E, Mendes P, Liebermeister W. Systematic construction of kinetic models from genome-scale metabolic networks. PLoS One, 2013, 8: e79195.
CrossRef Google scholar
[94.]
Savageau MA. Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J Theor Biol, 1970, 26: 215-226.
CrossRef Google scholar
[95.]
Voit Eberhard O. Biochemical systems theory: a review. ISRN Biomathematics, 2013, 2013: 897658.
[96.]
Dräger A, Kronfeld M, Ziller MJ, Supper J, Planatscher H, Magnus JB, Oldiges M, Kohlbacher O, Zell A. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. BMC Syst Biol, 2009, 3: 5.
CrossRef Google scholar
[97.]
Costa RS, Machado D, Rocha I, Ferreira EC. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations. Biosystems, 2010, 100: 150-157.
CrossRef Google scholar
[98.]
Rizk ML, Liao JC. Ensemble modeling for aromatic production in Escherichia coli. PLoS One, 2009, 4: e6903.
CrossRef Google scholar
[99.]
Tan YK, Liao JC. Metabolic ensemble modeling for strain engineers. Biotechnol J, 2012, 7: 343-353.
CrossRef Google scholar
[100.]
Contador CA, Rizk ML, Asenjo JA, Liao JC. Ensemble modeling for strain development of L-lysine-producing Escherichia coli. Metab Eng, 2009, 11(4–5): 221-233.
CrossRef Google scholar
[101.]
Dean JT, Rizk ML, TanY DKM, Liao JC. Ensemble modeling of hepatic fatty acid metabolism with a synthetic glyoxylate shunt. Biophys J, 2010, 98: 1385-1395.
CrossRef Google scholar
[102.]
Lee Y, Lafontaine Rivera JG, Liao JC. Ensemble modeling for robustness analysis in engineering non-native metabolic pathways. Metab Eng, 2014, 25: 63-71.
CrossRef Google scholar
[103.]
Khazaei T, McGuigan A, Mahadevan R. Ensemble modeling of cancer metabolism. Front Physiol, 2012, 3: 135.
CrossRef Google scholar
[104.]
Khodayari A, Zomorrodi AR, Liao JC, Maranas CD. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab Eng, 2014, 25: 50-62.
CrossRef Google scholar
[105.]
Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science, 2007, 316: 593-597.
CrossRef Google scholar
[106.]
Rizzi M, Baltes M, Theobald U, Reuss M. In vivo analysis of metabolic dynamic in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol Bioeng, 1997, 55: 592-608.
CrossRef Google scholar
[107.]
Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M. In vivo analysis of metabolic dynamic in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol Bioeng, 1997, 55: 305-316.
CrossRef Google scholar
[108.]
Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng, 2002, 79: 53-73.
CrossRef Google scholar
[109.]
Kadir TA, Mannan AA, Kierzek AM, McFadden J, Shimizu K. Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification. Microb Cell Fact, 2010, 9: 88.
CrossRef Google scholar
[110.]
Peskov K, Mogilevskaya E, Demin O. Kinetic modelling of central carbon metabolism in Escherichia coli. FEBS J, 2012, 279: 3374-3385.
CrossRef Google scholar
[111.]
Usuda Y, Nishio Y, Iwatani S, Van Dien SJ, Imaizumi A, Shimbo K, Kageyama N, Iwahata D, Miyano H, Matsui K. Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production. J Biotechnol, 2010, 147: 17-30.
CrossRef Google scholar
[112.]
Matsuoka Y, Shimizu K. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. J Biotechnol, 2013, 168: 155-173.
CrossRef Google scholar
[113.]
Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microb Cell Fact, 2011, 10: 67.
CrossRef Google scholar
[114.]
Toya Y, Ishii N, Nakahigashi K, Hirasawa T, Soga T, Tomita T, Shimizu K. 13C-metabolic flux analysis for batch culture of Escherichia coli and its Pyk and Pgi gene knockout mutants based on mass isotopomer distribution of intracellular metabolites. Biotechnol Prog, 2010, 26: 975-992.
[115.]
Toya Y, Nakahigashi K, Tomita M, Shimizu K. Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. Mol Biosyst, 2012, 8: 2593-2604.
CrossRef Google scholar
[116.]
Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol, 2004, 186: 7593-7600.
CrossRef Google scholar
[117.]
Kremling A, Bettenbrock K, Gilles ED. A feed-forward loop guarantees robust behavior in Escherichia coli carbohydrate uptake. Bioinformatics, 2008, 24: 704-710.
CrossRef Google scholar
[118.]
Kochanowski K, Volkmer B, Gerosa L, Haverkorn van Rijsewijk BR, Schmidt A, Heinemann M. Functioning of a metabolic flux sensor in Escherichia coli. Proc Natl Acad Sci U S A, 2013, 110: 1130-1135.
CrossRef Google scholar
[119.]
Huberts DH, Niebel B, Heinemann M. A flux-sensing mechanism could regulate the switch between respiration and fermentation. FEMS Yeast Res, 2012, 12: 118-128.
CrossRef Google scholar
[120.]
Christen S, Sauer U. Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. FEMS Yeast Res, 2011, 11: 263-272.
CrossRef Google scholar
[121.]
Boels E, Hollenberg CP. The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev, 1997, 21: 85-111.
CrossRef Google scholar
[122.]
Ricci JCD. Influence of phosphenolpyruvate on the dynamic behavior of phosphofructokinase of Escherichia coli. J Theor Biol, 1996, 178: 145-150.
CrossRef Google scholar
[123.]
Yang C, Hua Q, Baba T, Mori H, Shimizu K. Analysis of Escherichia coli anaprelotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol Bioeng, 2003, 84: 129-144.
CrossRef Google scholar
[124.]
Lee B, Yen J, Yang L, Liao JC. Incorporating qualitative knowledge in enzyme kinetic models using fuzzy logic. Biotechnol Bioeng, 1999, 63: 722-729.
CrossRef Google scholar
[125.]
Nizam SA, Zhu JF, Ho PY, Shimizu K. Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition. Biochem Eng J, 2009, 44: 240-250.
CrossRef Google scholar
[126.]
Vemuri GN, Eiteman MA, Altman E. Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Biotechnol Bioeng, 2006, 94: 538-542.
CrossRef Google scholar
[127.]
Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA. Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol, 2006, 72: 3653-3661.
CrossRef Google scholar
[128.]
Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev, 2005, 69: 12-50.
CrossRef Google scholar
[129.]
Xu YF, Amador-Noguez D, Reaves ML, Feng XJ, Rabinowitz JD. Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. Nat Chem Biol, 2012, 8: 562-568.
CrossRef Google scholar
[130.]
Voit E, Neves AR, Santos H. The intricate side of systems biology. Proc Natl Acad Sci U S A, 2006, 103: 9452-9457.
CrossRef Google scholar
[131.]
Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, Bongers R, Westerhoff HV, Snoep JL. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modeling, metabolic control and experimental analysis. Microbiol, 2002, 148: 1003-1013.
CrossRef Google scholar
[132.]
Kremling A, Jahreis K, Lengeler JW, Gilles ED. The organization of metabolic reaction networks: a signal-oriented approach to cellular models. Metab Eng, 2000, 2: 190-200.
CrossRef Google scholar
[133.]
Kremling A, Gilles ED. The organization of metabolic reaction networks. II. Signal processing in hierarchical structured functional units. Metab Eng, 2001, 3: 138-150.
CrossRef Google scholar
[134.]
Kremlng A, Fischer S, Sauter T, Bettenbrock K, Gilles ED. Time hierarchies in the Escherichia coli carbohydrate uptake and metabolism. BioSystems, 2004, 73: 57-71.
CrossRef Google scholar
[135.]
Sauter T, Gilles ED. Modeling and experimental validation of the signal transduction via the Escherichia coli sucrose phospho transferase system. J Biotech, 2004, 110: 181-199.
CrossRef Google scholar
[136.]
Bettenbrock K, Fischer S, Kremling A, Jahreis K, Sauter T, Gilles ED. A quantitative approach to catabolite repression in Escherichia coli. J Biol Chem, 2006, 281: 2578-2584.
CrossRef Google scholar
[137.]
Nishio Y, Usuda Y, Matsui K, Kurata H. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Mol Syst Biol, 2008, 4: 160.
CrossRef Google scholar
[138.]
Majewski RA, Domach MM. Simple constrained-optimization view of acetate overflow in Escherichia coli. Biotech Bioeng, 1990, 35: 732-738.
CrossRef Google scholar
[139.]
Rabinowitz J, Silhavy TJ. Metabolite turns master regulator. Nature, 2012, 500: 283-284.
CrossRef Google scholar
[140.]
Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD. Alpha-ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol, 2011, 7: 894-901.
CrossRef Google scholar
[141.]
Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. Interdependence of cell growth and gene expression: origins and consequences. Science, 2010, 330: 1099-1102.
CrossRef Google scholar
[142.]
You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang Y-P, Lenz P, Yan D, Hwa T. Coordination of bacterial proteome with metabolism by cyclic AMP signaling. Nature, 2013, 500: 301-306.
CrossRef Google scholar
[143.]
Vinuselvi P, Kim MK, Lee SK, Ghim C-M. Rewiring carbon catabolite repression for microbial cell factory. BMB Rep, 2012, 45(2): 59-70.
CrossRef Google scholar
[144.]
Gorke B, Stulke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Rev Microbiol, 2008, 6: 613-24.
CrossRef Google scholar
[145.]
Vasudevan P, Briggs M. Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol, 2008, 35: 421-430.
CrossRef Google scholar
[146.]
Dharmadi Y, Murarka A, Gonzalez R. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng, 2006, 94: 821-829.
CrossRef Google scholar
[147.]
Clomburg JM, Gonzalez R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol, 2013, 31: 20-28.
CrossRef Google scholar
[148.]
Almeida JRM, Fávaro LCL, Betania F, Quirino BF. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol for Biofuels, 2012, 5: 48.
CrossRef Google scholar
[149.]
Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G, Hernández-Chávez G, Ramírez OT, Gosset G, Encarnación S, Bolivar F. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Micob Cell Fact, 2012, 11: 46.
CrossRef Google scholar
[150.]
Oh MK, Liao JC. Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog, 2000, 16: 278-286.
CrossRef Google scholar
[151.]
Peng L, Shimizu K. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol, 2003, 61: 163-178.
CrossRef Google scholar
[152.]
Cintolesi A, Clomburg JM, Rigou V, Zygourakis K, Gonzalez R. Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli. Biotechnol Bioeng, 2012, 109: 187-198.
CrossRef Google scholar
[153.]
Saier MH, Ramseier TM. The catabolite repressor/activator (Cra) protein of enteric bacteria. Journal of Bacteriology, 1996, 178: 3411-3417.
[154.]
Kornberg HL. Routes for fructose utilization by Escherichia coli. J Mol Microbiol Biotechnol, 2001, 3: 355-359.
[155.]
Yao R, Shimizu K. Recent progress in metabolic engineering for the production of biofuels and biochemicals from renewable sources with particular emphasis on catabolite regulation and its modulation. Process Biochem, 2013, 48: 1409-1417.
CrossRef Google scholar
[156.]
Crasnier-Mednansky M, Park MC, Studley WK, Saier MH Jr. Cra-mediated regulations of Escherichia coli adenylate cyclase. Microbiology, 1997, 143: 785-792.
CrossRef Google scholar
[157.]
Griffith JK, Baker ME, Rouch DA, Page MG, Skurray RA, Paulsen IT, Chater KF, Baldwin SA, Henderson PJ. Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol, 1992, 4: 684-695.
CrossRef Google scholar
[158.]
Sumiya M, Davis EO, Packman LC, McDonald TP, Henderson PJ. Molecular genetics of a receptor protein for d-xylose, encoded by the gene xylF, in Escherichia coli. Receptors Channels, 1995, 3: 117-128.
[159.]
Song S, Park C. Organization and regulation of the d-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol, 1997, 179: 7025-7032.
[160.]
Altintas MM, Eddy CK, Zhang M, McMillan JD, Kompala DS. Kinetic modeling to optimize pentose fermentation in Zymomonas mobilis. Biotechnol Bioeng, 2006, 94: 273-295.
CrossRef Google scholar
[161.]
Yang C, Hua Q, Shimizu K. Development of a kinetic model for L-lysine biosynthesis in Corynebacterium glutamicum and its application to metabolic control analysis. J Biosci Bioeng, 1999, 88: 393-403.
CrossRef Google scholar
[162.]
Hua Q, Yang C, Shimizu K. Metabolic control analysis for lysine synthesis using Corynebacterium glutamicum and experimental verification. J Biosci Bioeng, 2000, 90: 184-192.
CrossRef Google scholar
[163.]
Nishio Y, Ogishima S, Ichikawa M, Yamada Y, Usuda Y, Masuda T, Tanaka H. Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli. BMC Sys Biol, 2013, 7: 92.
CrossRef Google scholar
[164.]
Li R-D, Li Y-Y, Lu L-Y, Ren C, Li Y-X, Liu L. An improved kinetic model for the acetone-butanol-etahnol pathway of Clostridium acetobutyricum and model-based perturbation analysis. BMC Sys Biol, 2011, 5: S12.
CrossRef Google scholar
[165.]
Shinto H, Tashiro Y, Kobayashi G, Sekiguchi T, Hanai T, Kuriya Y, Okamoto M, Sonomoto K. Kinetic modeling and sensitivity analysis of acetone-butanol-ethanol production. J Biotechnol, 2007, 131: 45-56.
CrossRef Google scholar
[166.]
Shinto H, Tashiro Y, Kobayashi G, Sekiguchi T, Hanai T, Kuriya Y, Okamoto M, Sonomoto K. Kinetic study of substrate dependency for higher butanol production in acetone-butanol-ethanol fermentation. Proc Biochem, 2008, 43: 1452-1461.
CrossRef Google scholar
[167.]
Alexeeva S, Hellingwerf KJ, de Mattos JT. Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol, 2003, 185: 204-209.
CrossRef Google scholar
[168.]
Shalel-Levanon S, San K-Y, Bennett GN. Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab Eng, 2005, 7: 364-374.
CrossRef Google scholar
[169.]
Cox SJ, Levanon SS, Bennett GN, San K-Y. Genetically constrained metabolic flux analysis. Metab Eng, 2005, 7: 445-456.
CrossRef Google scholar
[170.]
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev, 2013, 77: 628-695.
CrossRef Google scholar
[171.]
Rhee SG, Chock PB, Stadtman ER. Glutamine synthetase from Escherichia coli. Methods Enzymol, 1985, 113: 213-241.
CrossRef Google scholar
[172.]
Sakamoto N, Kotre AM, Savageau MA. Glutamate dehydrogenase from Escherichia coli: purification and properties. J Bacteriol, 1975, 124: 775-783.
[173.]
Bruggeman FJ, Boogerd FC, Westerhoff HV. The multifarious short-term regulation of ammonium assimilation of Ecsherichia coli: dissection using an in silico replica. FEBS J, 2005, 272: 1965-1985.
CrossRef Google scholar
[174.]
Atkinson MR, Blauwkamp TA, Bondarenko V, Studitsky V, Ninfa AJ. Activation of the glnA, glnK, and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation. J Bacteriol, 2002, 184: 5358-5363.
CrossRef Google scholar
[175.]
Reitzer L. Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol, 2003, 57: 155-176.
CrossRef Google scholar
[176.]
Ma H, Boogerd FC, Goryanin I. Modelling nitrogen assimilation of Escherichia coli at low ammonium concentration. J Biotechnol, 2009, 144: 175-183.
CrossRef Google scholar
[177.]
Yuan J, Doucette CD, Fowler WU, Feng XJ, Piazza M, Rabitz HA, Wingreen NS, Rabinowitz JD. Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli. Mol Syst Biol, 2009, 5: 302.
CrossRef Google scholar
[178.]
Lodeiro A, Melgarejo A. Robustness in Escherichia coli glutamate and glutamine synthesis studied by a kinetic mode. J Biol Phys, 2008, 34: 91-106.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/