Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism

Yu Matsuoka , Kazuyuki Shimizu

Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 4

PDF
Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 4 DOI: 10.1186/s40643-014-0031-7
Review

Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism

Author information +
History +
PDF

Abstract

It becomes more and more important to develop appropriate models for the efficient design of the cell factory for microbial biofuels and biochemical productions, since the appropriate model can predict the effect of culture environment and/or the specific pathway genes knockout on the growth characteristics. Among various modeling approaches, kinetic modeling is promising in the sense of realizing the essential feature of metabolic regulation. A brief overview is given for the current status of the kinetic modeling of the cell metabolism from the point of view of metabolic regulation focusing on Escherichia coli (but not limited to E. coli). For the proper modeling, it is important to realize the systems behavior by integrating different levels of information to understand and unravel the underlying principles of the living organisms, namely, it is important to properly understand how the environmental stimuli are detected by the cell, how those are transduced, and how the cell metabolism is regulated, and to express these into the model. In particular, it is important to incorporate the enzymatic regulations of Pyk, Pfk, and Ppc by fructose-1,6-bisphosphate (FBP), phosphoenol pyruvate (PEP), and acetyl-coenzyme A (AcCoA) to realize the flux-sensing and homeostatic behavior. The proper modeling for phosphotransferase system (PTS) and the transcriptional regulation by cAMP-Crp and Cra is also important to simulate the main metabolism in relation to catabolite regulation. The coordinated regulation between catabolic and anabolic (nitrogen source-assimilation) metabolisms may be simulated by the behavior of keto acid such as α-ketoglutarate (αKG). The metabolism under micro-aerobic conditions may be made by incorporating the global regulators such as ArcA/B and Fnr. It is quite important to develop quantitative kinetic models, which incorporate enzyme level and gene level regulations from the biological science and metabolic engineering points of view.

Keywords

Virtual microbe / Systems biology / Kinetic model / Metabolic regulation / Metabolic engineering / Dynamics / Metabolism / Escherichia coli

Cite this article

Download citation ▾
Yu Matsuoka, Kazuyuki Shimizu. Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism. Bioresources and Bioprocessing, 2015, 2(1): 4 DOI:10.1186/s40643-014-0031-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shimizu K. Microbial production of biofuels and biochemicals from biomass, 2014, Co, New York: NOVA publ.

[2]

Kitano H. Systems biology: a brief overview. Science, 2002, 295: 1662-1664.

[3]

Kitano H. Computational systems biology. Nature, 2002, 420: 206-210.

[4]

Stelling J. Mathematical models in microbial systems biology. Curr Opin Microbiol, 2004, 7: 513-518.

[5]

Kotte O, Zaugg JB, Heinemann M. Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Sys Biol, 2010, 6: 355.

[6]

Vemuri GN, Aristidou A. Metabolic engineering in the -omics era: elucidating and modulating regulatory networks. Microbiol Mol Biol Rev, 2005, 69: 197-216.

[7]

Shimizu K. Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites, 2014, 4: 1-35.

[8]

Matsuoka Y, Shimizu K. Metabolic regulation in Escherichia coli in response to culture environments via global regulators. Biotechnol J, 2011, 6: 1330-1341.

[9]

Chuvukov V, Gerosa L, Kochanowski K, Sauer U. Coordination of microbial metabolism. Nat Rev, 2014, 12: 327-340.

[10]

Selinger DW, Wright MA, Church GM. On the complete determination of biological systems. Trends Biotechnol, 2003, 21: 251-254.

[11]

Machado D, Costa R, Rocha M, Ferreira E, Tidor B, Rocha I. Modeling formalisms in systems biology. AMP Expre, 2011, 1: 1-34.

[12]

Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M. Kinetic models in industrial biotechnology-improving cell factory performance. Metabolic Eng, 2014, 24: 38-60.

[13]

Costa RS, Machado D, Rocha I, Pereira EC. Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modeling. IET Syst Biol, 2011, 5: 157-163.

[14]

Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG. Systems biology: parameter estimation for biochemical models. FEBS J, 2009, 276: 886-902.

[15]

Cvijovic M, Bordel S, Nielsen J. Mathematical models of cell factories: moving towards the core of industrial biotechnology. Microb Biotechnol, 2011, 4: 572-584.

[16]

Sauer U. Metabolic networks in motion: 13C-based flux analysis. Mol Syst Anal, 2006, 2: 62.

[17]

Long CP, Antoniewicz MR. Metabolic flux analysis of Escherichia coli knockouts: lessons from the Keio collection and future outlook. Curr Opin Biotechnol, 2014, 28: 127-133.

[18]

Quek LE, Nielsen LK (2014) Steady-State 13C Fluxomics Using OpenFLUX. In: Krömer JO, Nielsen LK, Blank LM (eds) Metabolic flux analysis: methods and protocols, vol. 1191, Springer, New York, 209-224

[19]

Shimizu K. Metabolic flux analysis based on 13C-labeling experiments and integration of the information with gene and protein expression patterns. Adv Biochem Eng Biotechnol, 2004, 91: 1-49.

[20]

Shimizu K. Bacterial cellular metabolic systems, 2013, Oxford: Woodhead Publ Ltd.

[21]

Matsuoka Y, Shimizu K (2014) 13C-Metabolic flux analysis for Escherichia coli. In: Krömer JO, Nielsen LK, Blank LM (eds) Metabolic flux analysis: methods and protocols, vol. 1191, Springer, New York, 261-289

[22]

Shimizu K. Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information. Biochem Eng J, 2009, 46: 235-251.

[23]

Wittman C. Fluxome analysis using GC-MS. Microb Cell Fact, 2007, 6: 6.

[24]

Herrgard MJ, Lee B-S, Portnoy V, Palsson BO. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res, 2006, 16: 627-635.

[25]

O'Brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BO. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Sys Biol, 2013, 9: 693.

[26]

Schuetz R, Kuepfer SU. Systematic evaluation of objective functions forpredicting intracellular fluxes in Escherichia coli. Mol Syst Biol, 2007, 3: 119.

[27]

Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U. Multidimensional optimality of microbial metabolism. Science, 2012, 336: 601-604.

[28]

Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng, 2003, 84: 647-657.

[29]

Pharkya P, Maranas CD. An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng, 2006, 8: 1-13.

[30]

Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. Plos Comput Biol, 2010, 6: e1000744.

[31]

Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M. OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol, 2010, 4: 45.

[32]

Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE, Omatu S, Corchado JM. Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS One, 2014, 9: e102744.

[33]

Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational framework for redesign of microbial production systems. Genom Res, 2014, 14: 2367-2376.

[34]

Yang L, Cluett WR, Mahadevan R. EMILiO: a fast algorithm for genome-scale strain design. Metab Eng, 2011, 13: 272-281.

[35]

Cotten C, Reed JL. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnol J, 2013, 8: 595-604.

[36]

Ibarra RU, Edwards JS, Palsson BO. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature, 2002, 420: 186-189.

[37]

Segrè D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A, 2002, 99: 15112-15117.

[38]

Rark JM, Kim TY, Lee SY. Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol Adv, 2009, 27: 979-988.

[39]

Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD. Mathematical optimization applications in metabolic networks. Metab Eng, 2012, 14: 672-686.

[40]

Covert MW, Xiao N, Chen TJ, Karr JR. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics, 2008, 24: 2044-2050.

[41]

Meadows AL, Karnik R, Lam H, Forestell S, Snedecor B. Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation. Metab Eng, 2010, 12: 150-160.

[42]

Feng X, Xu Y, Chen Y, Tang YJ. MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst Biol, 2012, 6: 94.

[43]

Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. Isme J, 2011, 5: 305-316.

[44]

Salimi F, Zhuang K, Mahadevan R. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol J, 2010, 5: 726-738.

[45]

Jamshidi N, Palsson . Formulating genome-scale kinetic models in the post-genome era. Mol Syst Biol, 2008, 4: 171.

[46]

Jamshidi N, Palsson . Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys J, 2010, 98: 175-185.

[47]

Smallbone K, Simeonidis E, Broomhead DS, Kell DB. Something from nothing - bridging the gap between constraint-based and kinetic modelling. FEBS J, 2007, 274: 5576-5585.

[48]

Smallbone K, Simeonidis E, Swainston N, Mendes P. Towards a genome-scale kinetic model of cellular metabolism. BMC Syst Biol, 2010, 4: 6.

[49]

Fleming RM, Thiele I, Provan G, Nasheuer HP. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. J Theor Biol, 2010, 264: 683-692.

[50]

Antoniewicz MR. Dynamic metabolic flux analysis-tools for probing transient states of metabolic networks. Curr Opin Biotechnol, 2013, 24: 973-978.

[51]

Hoffner K, Harwood SM, Barton PI. A reliable simulator for dynamic flux balance analysis. Biotechnol Bioeng, 2013, 110: 792-802.

[52]

Mahadevan R, Edwards JS, Doyle FJ. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J, 2002, 83: 1331-1340.

[53]

Hanly TJ, Henson MA. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng, 2011, 108: 376-385.

[54]

Hanly TJ, Urello M, Henson MA. Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Appl Microbiol Biotechnol, 2012, 93: 2529-2541.

[55]

Hanly TJ, Henson MA. Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol Biofuels, 2013, 6: 44.

[56]

Chowdhury A, Zomorrodi AR, Maranas CD. k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput Biol, 2014, 10: e1003487.

[57]

Klumpp S, Hwa T. Growth-rate dependent partitioning of RNA polymerases in bacteria. PNAS USA, 2008, 105: 20245-20250.

[58]

Klumpp S, Zhang Z, Hwa T. Growth-rate dependent global effects on gene expression in bacteria. Cell, 2009, 139: 1366-1375.

[59]

Valgepea K, Adamberg K, Seiman A, Vilu R. Escherichia coli achieves faster growth by increasing catalytic and translational rates of proteins. Mol Biosyst, 2013, 9: 2344-2358.

[60]

Harcomb WR, Delaney NF, Leiby N, Klitgord N, Marx CJ. The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum. PLoS Comput Biol, 2013, 9: e1003091.

[61]

Edwards JS, Covert MW, Palsson . Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol, 2002, 4: 133-140.

[62]

Karr JR, Sanghvi JC, Macklin DN, Gutschow MW, Jacobs JM, Bolival B Jr, Assad-Garcia N, Glass JI, Covert MW. A whole-cell computational model predicts phenotype from genotype. Cell, 2012, 150: 389-401.

[63]

Gunawardera J. Silicon dreams of cells into symbols. Nature, 2012, 30: 838-840.

[64]

Freddolino PL, Tavazoie S. The dawn of virtual cell biology. Cell, 2012, 150: 248-250.

[65]

Tomita M. Whole-cell simulation: a grand challenge of the 21st century. Trends in Biotech, 2001, 19: 205-210.

[66]

Heinrich R, Rapoport TA. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem, 1974, 42: 89-95.

[67]

van Riel NA. Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief Bioinform, 2006, 7: 364-374.

[68]

Heijnen JJ. Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng, 2005, 91: 534-545.

[69]

Wu L, Wang WM, van Winden WA, van Gulik WM, Heijnen JJ. A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. Eur J Biochem, 2004, 271: 3348-3359.

[70]

del Rosario RCH, Mendoza E, Voit EO. Challenges in lin-log modelling of glycolysis in Lactococcus lactis. Iet Syst Biol, 2008, 2: 136-149.

[71]

Hatzimanikatis V, Emmerling M, Sauer U, Bailey JE. Application of mathematical tools for metabolic design of microbial ethanol production. Biotechnol Bioeng, 1998, 58: 154-161.

[72]

Wang L, Hatzimanikatis V. Metabolic engineering under uncertainty-II: analysis of yeast metabolism. Metab Eng, 2006, 8: 142-159.

[73]

Pozo C, Marín-Sanguino A, Alves R, Guillén-Gosálbez G, Jiménez L, Sorribas A. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models. BMC Syst Biol, 2011, 5: 137.

[74]

Sorribas A, Hernandez-Bermejo B, Vilaprinyo E, Alves R. Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Biotechnol Bioeng, 2007, 97: 1259-1277.

[75]

Liebermeister W, Klipp E. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model, 2006, 3: 41.

[76]

Kim JI, Song HS, Sunkara SR, Lali A, Ramkrishna D. Exacting predictions by cybernetic model confirmed experimentally: steady state multiplicity in the chemostat. Biotechnol Prog, 2012, 28: 1160-1166.

[77]

Covert MW, Palsson . Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem, 2002, 277: 28058-28064.

[78]

Covert MW, Palsson . Constraints-based models: regulation of gene expression reduces the steady-state solution space. J Theor Biol, 2003, 221: 309-325.

[79]

Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, Palsson . Metabolic modeling of microbial strains in silico. Trends Biochem Sci, 2001, 26: 179-186.

[80]

Herrgård MJ, Fong SS, Palsson . Identification of genome-scale metabolic network models using experimentally measured flux profiles. Plos Comput Biol, 2006, 2: 676-686.

[81]

Song HS, Morgan JA, Ramkrishna D. Systematic development of hybrid cybernetic models: application to recombinant yeast co-consuming glucose and xylose. Biotechnol Bioeng, 2009, 103: 984-1002.

[82]

Ramkrishna D, Kompala DS, Tsao GT. Are microbes optimal strategists. Biotechnol Progr, 1987, 3: 121-126.

[83]

Varner J, Ramkrishna D. Metabolic engineering from a cybernetic perspective. 1. Theoretical preliminaries. Biotechnol Prog, 1999, 15: 407-425.

[84]

Young JD (2005) A system-level mathematical description of metabolic regulation combining aspects of elementary mode analysis with cybernetic control laws. PhD thesis, Purdue University

[85]

Young JD, Henne KL, Morgan JA, Konopka AE, Ramkrishna D. Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control. Biotechnol Bioeng, 2008, 100: 542-559.

[86]

Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol, 2000, 18: 326-332.

[87]

Kim JW, Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biocem Sci, 2005, 30: 142-150.

[88]

Kim JI, Varner JD, Ramkrishna D. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables. Biotechnol Prog, 2008, 24: 993-1006.

[89]

Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem, 2000, 267: 5313-5329.

[90]

Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol J, 2013, 8: 1043-1057.

[91]

Hatzimanikatis V, Bailey JE. MCA has more to say. J Theor Biol, 1996, 182: 233-242.

[92]

Smallbone K, Messiha HL, Carroll KM, Winder CL, Malys N, Dunn WB, Murabito E, Swainston N, Dada JO, Khan F, Pir P, Simeonidis E, Spasić I, Wishart J, Weichart D, Hayes NW, Jameson D, Broomhead DS, Oliver SG, Gaskell SJ, McCarthy JE, Paton NW, Westerhoff HV, Kell DB, Mendes P. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Lett, 2013, 587: 2832-2841.

[93]

Stanford NJ, Lubitz T, Smallbone K, Klipp E, Mendes P, Liebermeister W. Systematic construction of kinetic models from genome-scale metabolic networks. PLoS One, 2013, 8: e79195.

[94]

Savageau MA. Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J Theor Biol, 1970, 26: 215-226.

[95]

Voit Eberhard O. Biochemical systems theory: a review. ISRN Biomathematics, 2013, 2013: 897658.

[96]

Dräger A, Kronfeld M, Ziller MJ, Supper J, Planatscher H, Magnus JB, Oldiges M, Kohlbacher O, Zell A. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. BMC Syst Biol, 2009, 3: 5.

[97]

Costa RS, Machado D, Rocha I, Ferreira EC. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations. Biosystems, 2010, 100: 150-157.

[98]

Rizk ML, Liao JC. Ensemble modeling for aromatic production in Escherichia coli. PLoS One, 2009, 4: e6903.

[99]

Tan YK, Liao JC. Metabolic ensemble modeling for strain engineers. Biotechnol J, 2012, 7: 343-353.

[100]

Contador CA, Rizk ML, Asenjo JA, Liao JC. Ensemble modeling for strain development of L-lysine-producing Escherichia coli. Metab Eng, 2009, 11(4–5): 221-233.

[101]

Dean JT, Rizk ML, TanY DKM, Liao JC. Ensemble modeling of hepatic fatty acid metabolism with a synthetic glyoxylate shunt. Biophys J, 2010, 98: 1385-1395.

[102]

Lee Y, Lafontaine Rivera JG, Liao JC. Ensemble modeling for robustness analysis in engineering non-native metabolic pathways. Metab Eng, 2014, 25: 63-71.

[103]

Khazaei T, McGuigan A, Mahadevan R. Ensemble modeling of cancer metabolism. Front Physiol, 2012, 3: 135.

[104]

Khodayari A, Zomorrodi AR, Liao JC, Maranas CD. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab Eng, 2014, 25: 50-62.

[105]

Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science, 2007, 316: 593-597.

[106]

Rizzi M, Baltes M, Theobald U, Reuss M. In vivo analysis of metabolic dynamic in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol Bioeng, 1997, 55: 592-608.

[107]

Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M. In vivo analysis of metabolic dynamic in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol Bioeng, 1997, 55: 305-316.

[108]

Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng, 2002, 79: 53-73.

[109]

Kadir TA, Mannan AA, Kierzek AM, McFadden J, Shimizu K. Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification. Microb Cell Fact, 2010, 9: 88.

[110]

Peskov K, Mogilevskaya E, Demin O. Kinetic modelling of central carbon metabolism in Escherichia coli. FEBS J, 2012, 279: 3374-3385.

[111]

Usuda Y, Nishio Y, Iwatani S, Van Dien SJ, Imaizumi A, Shimbo K, Kageyama N, Iwahata D, Miyano H, Matsui K. Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production. J Biotechnol, 2010, 147: 17-30.

[112]

Matsuoka Y, Shimizu K. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. J Biotechnol, 2013, 168: 155-173.

[113]

Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microb Cell Fact, 2011, 10: 67.

[114]

Toya Y, Ishii N, Nakahigashi K, Hirasawa T, Soga T, Tomita T, Shimizu K. 13C-metabolic flux analysis for batch culture of Escherichia coli and its Pyk and Pgi gene knockout mutants based on mass isotopomer distribution of intracellular metabolites. Biotechnol Prog, 2010, 26: 975-992.

[115]

Toya Y, Nakahigashi K, Tomita M, Shimizu K. Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. Mol Biosyst, 2012, 8: 2593-2604.

[116]

Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol, 2004, 186: 7593-7600.

[117]

Kremling A, Bettenbrock K, Gilles ED. A feed-forward loop guarantees robust behavior in Escherichia coli carbohydrate uptake. Bioinformatics, 2008, 24: 704-710.

[118]

Kochanowski K, Volkmer B, Gerosa L, Haverkorn van Rijsewijk BR, Schmidt A, Heinemann M. Functioning of a metabolic flux sensor in Escherichia coli. Proc Natl Acad Sci U S A, 2013, 110: 1130-1135.

[119]

Huberts DH, Niebel B, Heinemann M. A flux-sensing mechanism could regulate the switch between respiration and fermentation. FEMS Yeast Res, 2012, 12: 118-128.

[120]

Christen S, Sauer U. Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. FEMS Yeast Res, 2011, 11: 263-272.

[121]

Boels E, Hollenberg CP. The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev, 1997, 21: 85-111.

[122]

Ricci JCD. Influence of phosphenolpyruvate on the dynamic behavior of phosphofructokinase of Escherichia coli. J Theor Biol, 1996, 178: 145-150.

[123]

Yang C, Hua Q, Baba T, Mori H, Shimizu K. Analysis of Escherichia coli anaprelotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol Bioeng, 2003, 84: 129-144.

[124]

Lee B, Yen J, Yang L, Liao JC. Incorporating qualitative knowledge in enzyme kinetic models using fuzzy logic. Biotechnol Bioeng, 1999, 63: 722-729.

[125]

Nizam SA, Zhu JF, Ho PY, Shimizu K. Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition. Biochem Eng J, 2009, 44: 240-250.

[126]

Vemuri GN, Eiteman MA, Altman E. Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Biotechnol Bioeng, 2006, 94: 538-542.

[127]

Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA. Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol, 2006, 72: 3653-3661.

[128]

Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev, 2005, 69: 12-50.

[129]

Xu YF, Amador-Noguez D, Reaves ML, Feng XJ, Rabinowitz JD. Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. Nat Chem Biol, 2012, 8: 562-568.

[130]

Voit E, Neves AR, Santos H. The intricate side of systems biology. Proc Natl Acad Sci U S A, 2006, 103: 9452-9457.

[131]

Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, Bongers R, Westerhoff HV, Snoep JL. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modeling, metabolic control and experimental analysis. Microbiol, 2002, 148: 1003-1013.

[132]

Kremling A, Jahreis K, Lengeler JW, Gilles ED. The organization of metabolic reaction networks: a signal-oriented approach to cellular models. Metab Eng, 2000, 2: 190-200.

[133]

Kremling A, Gilles ED. The organization of metabolic reaction networks. II. Signal processing in hierarchical structured functional units. Metab Eng, 2001, 3: 138-150.

[134]

Kremlng A, Fischer S, Sauter T, Bettenbrock K, Gilles ED. Time hierarchies in the Escherichia coli carbohydrate uptake and metabolism. BioSystems, 2004, 73: 57-71.

[135]

Sauter T, Gilles ED. Modeling and experimental validation of the signal transduction via the Escherichia coli sucrose phospho transferase system. J Biotech, 2004, 110: 181-199.

[136]

Bettenbrock K, Fischer S, Kremling A, Jahreis K, Sauter T, Gilles ED. A quantitative approach to catabolite repression in Escherichia coli. J Biol Chem, 2006, 281: 2578-2584.

[137]

Nishio Y, Usuda Y, Matsui K, Kurata H. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli. Mol Syst Biol, 2008, 4: 160.

[138]

Majewski RA, Domach MM. Simple constrained-optimization view of acetate overflow in Escherichia coli. Biotech Bioeng, 1990, 35: 732-738.

[139]

Rabinowitz J, Silhavy TJ. Metabolite turns master regulator. Nature, 2012, 500: 283-284.

[140]

Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD. Alpha-ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol, 2011, 7: 894-901.

[141]

Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. Interdependence of cell growth and gene expression: origins and consequences. Science, 2010, 330: 1099-1102.

[142]

You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang Y-P, Lenz P, Yan D, Hwa T. Coordination of bacterial proteome with metabolism by cyclic AMP signaling. Nature, 2013, 500: 301-306.

[143]

Vinuselvi P, Kim MK, Lee SK, Ghim C-M. Rewiring carbon catabolite repression for microbial cell factory. BMB Rep, 2012, 45(2): 59-70.

[144]

Gorke B, Stulke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Rev Microbiol, 2008, 6: 613-24.

[145]

Vasudevan P, Briggs M. Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol, 2008, 35: 421-430.

[146]

Dharmadi Y, Murarka A, Gonzalez R. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng, 2006, 94: 821-829.

[147]

Clomburg JM, Gonzalez R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol, 2013, 31: 20-28.

[148]

Almeida JRM, Fávaro LCL, Betania F, Quirino BF. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol for Biofuels, 2012, 5: 48.

[149]

Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G, Hernández-Chávez G, Ramírez OT, Gosset G, Encarnación S, Bolivar F. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Micob Cell Fact, 2012, 11: 46.

[150]

Oh MK, Liao JC. Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog, 2000, 16: 278-286.

[151]

Peng L, Shimizu K. Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol, 2003, 61: 163-178.

[152]

Cintolesi A, Clomburg JM, Rigou V, Zygourakis K, Gonzalez R. Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli. Biotechnol Bioeng, 2012, 109: 187-198.

[153]

Saier MH, Ramseier TM. The catabolite repressor/activator (Cra) protein of enteric bacteria. Journal of Bacteriology, 1996, 178: 3411-3417.

[154]

Kornberg HL. Routes for fructose utilization by Escherichia coli. J Mol Microbiol Biotechnol, 2001, 3: 355-359.

[155]

Yao R, Shimizu K. Recent progress in metabolic engineering for the production of biofuels and biochemicals from renewable sources with particular emphasis on catabolite regulation and its modulation. Process Biochem, 2013, 48: 1409-1417.

[156]

Crasnier-Mednansky M, Park MC, Studley WK, Saier MH Jr. Cra-mediated regulations of Escherichia coli adenylate cyclase. Microbiology, 1997, 143: 785-792.

[157]

Griffith JK, Baker ME, Rouch DA, Page MG, Skurray RA, Paulsen IT, Chater KF, Baldwin SA, Henderson PJ. Membrane transport proteins: implications of sequence comparisons. Curr Opin Cell Biol, 1992, 4: 684-695.

[158]

Sumiya M, Davis EO, Packman LC, McDonald TP, Henderson PJ. Molecular genetics of a receptor protein for d-xylose, encoded by the gene xylF, in Escherichia coli. Receptors Channels, 1995, 3: 117-128.

[159]

Song S, Park C. Organization and regulation of the d-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol, 1997, 179: 7025-7032.

[160]

Altintas MM, Eddy CK, Zhang M, McMillan JD, Kompala DS. Kinetic modeling to optimize pentose fermentation in Zymomonas mobilis. Biotechnol Bioeng, 2006, 94: 273-295.

[161]

Yang C, Hua Q, Shimizu K. Development of a kinetic model for L-lysine biosynthesis in Corynebacterium glutamicum and its application to metabolic control analysis. J Biosci Bioeng, 1999, 88: 393-403.

[162]

Hua Q, Yang C, Shimizu K. Metabolic control analysis for lysine synthesis using Corynebacterium glutamicum and experimental verification. J Biosci Bioeng, 2000, 90: 184-192.

[163]

Nishio Y, Ogishima S, Ichikawa M, Yamada Y, Usuda Y, Masuda T, Tanaka H. Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli. BMC Sys Biol, 2013, 7: 92.

[164]

Li R-D, Li Y-Y, Lu L-Y, Ren C, Li Y-X, Liu L. An improved kinetic model for the acetone-butanol-etahnol pathway of Clostridium acetobutyricum and model-based perturbation analysis. BMC Sys Biol, 2011, 5: S12.

[165]

Shinto H, Tashiro Y, Kobayashi G, Sekiguchi T, Hanai T, Kuriya Y, Okamoto M, Sonomoto K. Kinetic modeling and sensitivity analysis of acetone-butanol-ethanol production. J Biotechnol, 2007, 131: 45-56.

[166]

Shinto H, Tashiro Y, Kobayashi G, Sekiguchi T, Hanai T, Kuriya Y, Okamoto M, Sonomoto K. Kinetic study of substrate dependency for higher butanol production in acetone-butanol-ethanol fermentation. Proc Biochem, 2008, 43: 1452-1461.

[167]

Alexeeva S, Hellingwerf KJ, de Mattos JT. Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol, 2003, 185: 204-209.

[168]

Shalel-Levanon S, San K-Y, Bennett GN. Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab Eng, 2005, 7: 364-374.

[169]

Cox SJ, Levanon SS, Bennett GN, San K-Y. Genetically constrained metabolic flux analysis. Metab Eng, 2005, 7: 445-456.

[170]

van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev, 2013, 77: 628-695.

[171]

Rhee SG, Chock PB, Stadtman ER. Glutamine synthetase from Escherichia coli. Methods Enzymol, 1985, 113: 213-241.

[172]

Sakamoto N, Kotre AM, Savageau MA. Glutamate dehydrogenase from Escherichia coli: purification and properties. J Bacteriol, 1975, 124: 775-783.

[173]

Bruggeman FJ, Boogerd FC, Westerhoff HV. The multifarious short-term regulation of ammonium assimilation of Ecsherichia coli: dissection using an in silico replica. FEBS J, 2005, 272: 1965-1985.

[174]

Atkinson MR, Blauwkamp TA, Bondarenko V, Studitsky V, Ninfa AJ. Activation of the glnA, glnK, and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation. J Bacteriol, 2002, 184: 5358-5363.

[175]

Reitzer L. Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol, 2003, 57: 155-176.

[176]

Ma H, Boogerd FC, Goryanin I. Modelling nitrogen assimilation of Escherichia coli at low ammonium concentration. J Biotechnol, 2009, 144: 175-183.

[177]

Yuan J, Doucette CD, Fowler WU, Feng XJ, Piazza M, Rabitz HA, Wingreen NS, Rabinowitz JD. Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli. Mol Syst Biol, 2009, 5: 302.

[178]

Lodeiro A, Melgarejo A. Robustness in Escherichia coli glutamate and glutamine synthesis studied by a kinetic mode. J Biol Phys, 2008, 34: 91-106.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/