Genotyping of amino acid-producing Corynebacterium glutamicum strains based on multi-locus sequence typing (MLST) scheme

Junjie Yang, Yimeng Kong, Sheng Yang

Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 1.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2015, Vol. 2 ›› Issue (1) : 1. DOI: 10.1186/s40643-014-0030-8
Research

Genotyping of amino acid-producing Corynebacterium glutamicum strains based on multi-locus sequence typing (MLST) scheme

Author information +
History +

Abstract

Background

Confusing parental information may hinder to dissect mechanisms of amino acid hyper-producing Corynebacterium glutamicum strains. Thus, an efficient method for genotyping of the C. glutamicum is heavily called.

Results

Multi-locus sequence typing (MLST) is currently the most popular molecular typing technique. But currently this method is not available for C. glutamicum. In this study, a MLST scheme was established based on sequences of seven housekeeping genes, for genotyping of C. glutamicum. The MLST method performed an efficient discrimination of 17 strains and helps to understand the population structure of this bacterium.

Conclusions

This work has expanded the MLST method to C. glutamicum and developed an efficient technique to discriminate strains of uncertain origin.

Keywords

Corynebacterium glutamicum / Multi-locus sequence typing / Amino acid producing / Corynebacterium crenatum / 16S rDNA

Cite this article

Download citation ▾
Junjie Yang, Yimeng Kong, Sheng Yang. Genotyping of amino acid-producing Corynebacterium glutamicum strains based on multi-locus sequence typing (MLST) scheme. Bioresources and Bioprocessing, 2015, 2(1): 1 https://doi.org/10.1186/s40643-014-0030-8

References

[1.]
Ikeda M, Nakagawa S. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol, 2003, 62(2–3): 99-109.
CrossRef Google scholar
[2.]
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol, 2003, 104(1–3): 5-25.
CrossRef Google scholar
[3.]
Liebl W, Ehrmann M, Ludwig W, Schleifer KH. Transfer of Brevibacterium divaricatum DSM 20297T, “Brevibacterium flavum” DSM 20411, “Brevibacterium lactofermentum” DSM 20412 and DSM 1412, and Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol, 1991, 41(2): 255-60.
CrossRef Google scholar
[4.]
Pascual C, Lawson PA, Farrow JA, Gimenez MN, Collins MD. Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. Int J Syst Bacteriol, 1995, 45(4): 724-8.
CrossRef Google scholar
[5.]
Kinoshita S, Nakayama K, Akita S. Taxonomical study of glutamic acid accumulating bacteria, Micrococcus glutamicus nov. sp. Bull Agric Chem Soc Jpn, 1958, 22: 176-85.
CrossRef Google scholar
[6.]
Ge B-Z, Wang J-X, Zhu S-J, Si X-D. Identification of glutamic acid producing strains by phages (in Chinese with English abstract). Virol Sin, 1991, 6(3): 256-9.
[7.]
Bolt F, Cassiday P, Tondella ML, Dezoysa A, Efstratiou A, Sing A, Zasada A, Bernard K, Guiso N, Badell E, Rosso ML, Baldwin A, Dowson C. Multilocus sequence typing identifies evidence for recombination and two distinct lineages of Corynebacterium diphtheriae. J Clin Microbiol, 2010, 48(11): 4177-85.
CrossRef Google scholar
[8.]
Maiden MC, van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol, 2013, 11(10): 728-36.
CrossRef Google scholar
[9.]
Chen Q, Zhang Z-Y, Li L-G. A new L-glutamic acid-producing species of Corynebacterium (in Chinese with English abstract). Acta Microbiol Sinica (Wei Sheng Wu Xue Bao), 1973, 13(1): 1-6.
[10.]
Institute_of_Microbiology_Chinese_Academy_of_Sciences, Hangzhou_Glutamate_Factory. Study on the production of lysine by auxotrophic mutant of Corynebacterium pekinense AS1.299 (in Chinese). Microbiol China (Wei Sheng Wu Xue Tong Bao), 1974, 1(1): 7-11.
[11.]
Chen Q, Li L-G. Studies on L-glutamic acid producing bacteria AS 1.542. I. Identification of strain AS 1.542 (in Chinese with English abstract). Acta Microbiol Sinica (Wei Sheng Wu Xue Bao), 1975, 15(2): 119-24.
[12.]
Zhang K, Liu Y. Studies on glutamate dehydrogenase from Brevibacterium tianjinese T6-13 (in Chinese with English abstract). Acta Microbiol Sinica (Wei Sheng Wu Xue Bao), 1991, 31(4): 281-6.
[13.]
Onoda T, Yoshinaga F, Kubota K, Kamijo H, Okumura S (1973) Method of producing l-arginine by microorganism. US Patent 3723249, patent date 27/03/1973
[14.]
Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, Bott M, Noack S, Frunzke J. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl Environ Microbiol, 2013, 79(19): 6006-15.
CrossRef Google scholar
[15.]
Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology, 2007, 153(Pt 4): 1042-58.
CrossRef Google scholar
[16.]
Lv Y, Liao J, Wu Z, Han S, Lin Y, Zheng S. Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in coryneform bacteria. J Bacteriol, 2012, 194(3): 742-3.
CrossRef Google scholar
[17.]
Lv Y, Wu Z, Han S, Lin Y, Zheng S. Genome sequence of Corynebacterium glutamicum S9114, a strain for industrial production of glutamate. J Bacteriol, 2011, 193(21): 6096-7.
CrossRef Google scholar
[18.]
Jolley KA, Maiden MC. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 2010, 11: 595.
CrossRef Google scholar
[19.]
Xu M, Rao Z, Dou W, Xu Z. The role of ARGR repressor regulation on L-arginine production in Corynebacterium crenatum. Appl Biochem Biotechnol, 2013, 170(3): 587-97.
CrossRef Google scholar
[20.]
Yun F, Zhou W (1994) Breeding and application of a strain of high glutamic acid yielding bacterium S9114 (in Chinese with English abstract). J South China University of Technol (Natural Science). 1994;22(1):56-62.

18

Accesses

29

Citations

Detail

Sections
Recommended

/