Engineering of Corynebacterium glutamicum for growth and production of L-ornithine, L-lysine, and lycopene from hexuronic acids

Atika Hadiati, Irene Krahn, Steffen N Lindner, Volker F Wendisch

Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 25.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 25. DOI: 10.1186/s40643-014-0025-5
Research

Engineering of Corynebacterium glutamicum for growth and production of L-ornithine, L-lysine, and lycopene from hexuronic acids

Author information +
History +

Abstract

Background

Second-generation feedstocks such as lignocellulosic hydrolysates are more and more in the focus of sustainable biotechnological processes. Corynebacterium glutamicum, which is used in industrial amino acid production at a million-ton scale, has been engineered towards utilization of alternative carbon sources. As for other microorganisms, the focus has been set on the pentose sugars present in lignocellulosic hydrolysates. Utilization of the hexuronic acids D-galacturonic acid (abundant in pectin-rich waste streams such as peels and pulps) and D-glucuronic acid (a component of the side-chains of plant xylans) for growth and production with C. glutamicum has not yet been studied.

Results

Neither aldohexuronic acid supported growth of C. glutamicum as sole or combined carbon source, although its genome encodes a putative uronate isomerase sharing 28% identical amino acids with UxaC from Escherichia coli. Heterologous expression of the genes for both uptake and catabolism of D-galacturonic acid and D-glucuronic acid was required to enable growth of C. glutamicum with either aldohexuronic acid as the sole carbon source. When present in mixtures with glucose, the recombinant C. glutamicum strains co-utilized D-galacturonate with glucose and D-glucuronate with glucose, respectively. When transformed with the plasmid for uptake and catabolism of the aldohexuronates, model producer strains were able to grow with and produce from D-galacturonate or D-glucuronate as sole carbon source.

Conclusions

An easily transferable metabolic engineering strategy for access of C. glutamicum to aldohexuronates was developed and applied to growth and production of the amino acids L-lysine and L-ornithine as well as the terpene lycopene from D-galacturonate or D-glucuronate.

Keywords

Lycopene / Sole Carbon Source / Corynebacterium Glutamicum / Lignocellulosic Hydrolysate / Alternative Carbon Source

Cite this article

Download citation ▾
Atika Hadiati, Irene Krahn, Steffen N Lindner, Volker F Wendisch. Engineering of Corynebacterium glutamicum for growth and production of L-ornithine, L-lysine, and lycopene from hexuronic acids. Bioresources and Bioprocessing, 2014, 1(1): 25 https://doi.org/10.1186/s40643-014-0025-5

References

[1.]
Eggeling L, Bott M. Handbook of Corynebacterium glutamicum, 2005, Boca Raton: CRC
CrossRef Google scholar
[2.]
Blombach B, Seibold GM. Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains. Appl Microbiol Biotechnol, 2010, 86 5 1313-1322.
CrossRef Google scholar
[3.]
Cocaign M, Monnet C, Lindley ND. Batch kinetics of Corynebacterium glutamicum during growth on various carbon sources: use of substrate mixtures to localise metabolic bottlenecks. Appl Microbiol Biotechnol, 1993, 40: 526-530.
CrossRef Google scholar
[4.]
Dominguez H, Cocaign-Bousquet M, Lindley ND. Simultaneous consumption of glucose and fructose from sugar mixtures during batch growth of Corynebacterium glutamicum. Appl Microbiol Biotechnol, 1997, 47 5 600-603.
CrossRef Google scholar
[5.]
Dominguez H, Nezondet C, Lindley ND, Cocaign M. Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotech Lett, 1993, 15: 449-454.
CrossRef Google scholar
[6.]
Wendisch VF, de Graaf AA, Sahm H, Eikmanns BJ. Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol, 2000, 182 11 3088-3096.
CrossRef Google scholar
[7.]
Monod J. The growth of bacterial cultures. Ann Rev Microbiol, 1949, 3: 371-394.
CrossRef Google scholar
[8.]
Zahoor A, Lindner SN, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J, 2012, 3: e201210004.
CrossRef Google scholar
[9.]
Wendisch VF. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol, 2014, 30C: 51-58.
CrossRef Google scholar
[10.]
Ikeda M. Amino acid production processes. Adv Biochem Eng Biotechnol, 2003, 79: 1-35.
[11.]
Wendisch VF. Amino acid biosynthesis – pathways, regulation and metabolic engineering, 2007, Heidelberg: Springer
CrossRef Google scholar
[12.]
Hermann T. Industrial production of amino acids by coryneform bacteria. J Biotechnol, 2003, 104 1–3 155-172.
CrossRef Google scholar
[13.]
Leuchtenberger W, Huthmacher K, Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol, 2005, 69 1 1-8.
CrossRef Google scholar
[14.]
Schneider J, Niermann K, Wendisch VF. Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol, 2011, 154 2–3 191-198.
CrossRef Google scholar
[15.]
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol, 2011, 77 10 3300-3310.
CrossRef Google scholar
[16.]
Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol, 2004, 8 4 243-254.
CrossRef Google scholar
[17.]
Schneider J, Wendisch VF. Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2010, 88 4 859-868.
CrossRef Google scholar
[18.]
Schneider J, Eberhardt D, Wendisch VF. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol, 2012, 95 1 169-178.
CrossRef Google scholar
[19.]
Mimitsuka T, Sawai H, Hatsu M, Yamada K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem, 2007, 71 9 2130-2135.
CrossRef Google scholar
[20.]
Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF. Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2014, 98 3 1223-1235.
CrossRef Google scholar
[21.]
Heider SA, Peters-Wendisch P, Wendisch VF. Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiol, 2012, 12: 198.
CrossRef Google scholar
[22.]
Heider SA, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechnol, 2014, 98 10 4355-4368.
CrossRef Google scholar
[23.]
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum. Front Bioeng Biotechnol, 2014, 2: 28.
CrossRef Google scholar
[24.]
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF. Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum. J Biotechnol, 2014 doi:10.1016/j.jbiotec.2014.05.032
[25.]
Kang MK, Eom JH, Kim Y, Um Y, Woo HM. Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnol Lett, 2014, 36 10 2069-2077.
CrossRef Google scholar
[26.]
Sasaki M, Jojima T, Inui M, Yukawa H. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol, 2009, 86: 1057-1066.
CrossRef Google scholar
[27.]
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2011, 92 5 985-996.
CrossRef Google scholar
[28.]
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol, 2013, 6 2 131-140.
CrossRef Google scholar
[29.]
Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP. Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol, 2004, 70 5 2861-2866.
CrossRef Google scholar
[30.]
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol, 2009, 75 11 3419-3429.
CrossRef Google scholar
[31.]
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K. Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2013, 97 4 1679-1687.
CrossRef Google scholar
[32.]
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Seibold GM. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine. Appl Microbiol Biotechnol, 2014, 98 12 5633-5643.
CrossRef Google scholar
[33.]
Rittmann D, Lindner SN, Wendisch VF. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol, 2008, 74 20 6216-6222.
CrossRef Google scholar
[34.]
Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol, 2001, 56 1–2 17-34.
CrossRef Google scholar
[35.]
Boer H, Maaheimo H, Koivula A, Penttila M, Richard P. Identification in Agrobacterium tumefaciens of the D-galacturonic acid dehydrogenase gene. Appl Microbiol Biotechnol, 2010, 86 3 901-909.
CrossRef Google scholar
[36.]
Conway T. The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev, 1992, 9 1 1-27.
CrossRef Google scholar
[37.]
Blombach B, Hans S, Bathe B, Eikmanns BJ. Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol, 2009, 75 2 419-427.
CrossRef Google scholar
[38.]
Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol, 1983, 166 4 557-580.
CrossRef Google scholar
[39.]
Eggeling L, Reyes O. Eggeling L, Bott M. Experiments. Handbook of Corynebacterium glutamicum, 2005, Boca Raton: CRC, 3535-3566.
CrossRef Google scholar
[40.]
Abe S, Takayarna K, Kinoshita S. Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol, 1967, 13: 279-301.
CrossRef Google scholar
[41.]
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol, 2005, 71 10 5920-5928.
CrossRef Google scholar
[42.]
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol, 2001, 3 2 295-300.
[43.]
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke KU, Sahm H. Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology, 1994, 140 Pt 8 1817-1828.
CrossRef Google scholar
[44.]
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009, 6 5 343-345.
CrossRef Google scholar
[45.]
Wendisch VF. Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol, 2003, 104 1–3 273-285.
CrossRef Google scholar
[46.]
Altschul SF1, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol, 1990, 215: 403-410.
CrossRef Google scholar
[47.]
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol, 2003, 104 1–3 5-25.
CrossRef Google scholar
[48.]
Blattner FR, Plunkett G 3rd Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. The complete genome sequence of Escherichia coli K-12. Science, 1997, 277 5331 1453-1474.
CrossRef Google scholar
[49.]
Engels V, Lindner SN, Wendisch VF. The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum. J Bacteriol, 2008, 190 24 8033-8044.
CrossRef Google scholar
[50.]
Pao SS, Paulsen IT, Saier MH Jr. Major facilitator superfamily. Microbiol Mol Biol Rev, 1998, 62 1 1-34.
[51.]
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF. Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol, 2013, 145: 254-258.
CrossRef Google scholar
[52.]
Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol, 2009, 85 1 105-115.
CrossRef Google scholar
[53.]
Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol, 2008, 190 19 6458-6466.
CrossRef Google scholar
[54.]
Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol, 2009, 191 17 5480-5488.
CrossRef Google scholar
[55.]
Bates Utz C, Nguyen AB, Smalley DJ, Anderson AB, Conway T. GntP is the Escherichia coli fructuronic acid transporter and belongs to the UxuR regulon. J Bacteriol, 2004, 186 22 7690-7696.
CrossRef Google scholar
[56.]
Frunzke J, Engels V, Hasenbein S, Gatgens C, Bott M. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol, 2008, 67 2 305-322.
CrossRef Google scholar
[57.]
Kuivanen J, Richard P. The yjjN of E. coli codes for an L-galactonate dehydrogenase and can be used for quantification of L-galactonate and L-gulonate. Appl Biochem Biotechnol, 2014, 173 7 1829-1835.
CrossRef Google scholar
[58.]
Rothe M, Alpert C, Loh G, Blaut M. Novel insights into E. coli's hexuronate metabolism: KduI facilitates the conversion of galacturonate and glucuronate under osmotic stress conditions. PLoS One, 2013, 8 2 e56906.
CrossRef Google scholar

16

Accesses

19

Citations

8

Altmetric

Detail

Sections
Recommended

/