Programming the group behaviors of bacterial communities with synthetic cellular communication

Wentao Kong , Venhar Celik , Chen Liao , Qiang Hua , Ting Lu

Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 24

PDF
Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 24 DOI: 10.1186/s40643-014-0024-6
Review

Programming the group behaviors of bacterial communities with synthetic cellular communication

Author information +
History +
PDF

Abstract

Synthetic biology is a newly emerged research discipline that focuses on the engineering of novel cellular behaviors and functionalities through the creation of artificial gene circuits. One important class of synthetic circuits currently under active development concerns the programming of bacterial cellular communication and collective population-scale behaviors. Because of the ubiquity of cell-cell interactions within bacterial communities, having an ability of engineering these circuits is vital to programming robust cellular behaviors. Here, we highlight recent advances in communication-based synthetic gene circuits by first discussing natural communication systems and then surveying various functional engineered circuits, including those for population density control, temporal synchronization, spatial organization, and ecosystem formation. We conclude by summarizing recent advances, outlining existing challenges, and discussing potential applications and future opportunities.

Keywords

Synthetic biology / Gene circuits / Bacterial communities / Cellular communication / Collective behaviors / Dynamics

Cite this article

Download citation ▾
Wentao Kong, Venhar Celik, Chen Liao, Qiang Hua, Ting Lu. Programming the group behaviors of bacterial communities with synthetic cellular communication. Bioresources and Bioprocessing, 2014, 1(1): 24 DOI:10.1186/s40643-014-0024-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403 6767 335-338.

[2]

Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403 6767 339-342.

[3]

Atkinson MR, Savageau MA, Myers JT, Ninfa AJ. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell, 2003, 113 5 597-607.

[4]

Kramer BP, Viretta AU, Daoud-El Baba M, Aubel D, Weber W, Fussenegger M. An engineered epigenetic transgene switch in mammalian cells. Nat Biotechnol, 2004, 22 7 867-870.

[5]

Bayer TS, Smolke CD. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol, 2005, 123 3 337-343.

[6]

Deans TL, Cantor CR, Collins JJ. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell, 2007, 130 2 363-372.

[7]

Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ. Synthetic gene networks that count. Science, 2009, 324 5931 1199-1202.

[8]

Ellis T, Wang X, Collins JJ. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol, 2009, 27 5 465-471.

[9]

Wu M, Su R-Q, Li X, Ellis T, Lai Y-C, Wang X. Engineering of regulated stochastic cell fate determination. Proc Natl Acad Sci U S A, 2013, 110 26 10610-10615.

[10]

Fung E, Wong WW, Suen JK, Bulter T, S-g L, Liao JC. A synthetic gene–metabolic oscillator. Nature, 2005, 435 7038 118-122.

[11]

Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature, 2008, 456 7221 516-519.

[12]

Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M. A tunable synthetic mammalian oscillator. Nature, 2009, 457 7227 309-312.

[13]

Danino T, Mondragón-Palomino O, Tsimring L, Hasty J. A synchronized quorum of genetic clocks. Nature, 2010, 463 7279 326-330.

[14]

Ham TS, Lee SK, Keasling JD, Arkin AP. Design and construction of a double inversion recombination switch for heritable sequential genetic memory. PLoS One, 2008, 3 7 e2815.

[15]

Ajo-Franklin CM, Drubin DA, Eskin JA, Gee EP, Landgraf D, Phillips I, Silver PA. Rational design of memory in eukaryotic cells. Genes Dev, 2007, 21 18 2271-2276.

[16]

Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R. A synthetic multicellular system for programmed pattern formation. Nature, 2005, 434 7037 1130-1134.

[17]

Kobayashi H, Kærn M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ. Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A, 2004, 101 22 8414-8419.

[18]

You L, Cox RS, Weiss R, Arnold FH. Programmed population control by cell–cell communication and regulated killing. Nature, 2004, 428 6985 868-871.

[19]

Guet CC, Elowitz MB, Hsing W, Leibler S. Combinatorial synthesis of genetic networks. Science, 2002, 296 5572 1466-1470.

[20]

Rackham O, Chin JW. Cellular logic with orthogonal ribosomes. J Am Chem Soc, 2005, 127 50 17584-17585.

[21]

Anderson JC, Voigt CA, Arkin AP. Environmental signal integration by a modular AND gate. Mol Syst Biol, 2007, 3: 133.

[22]

Win MN, Smolke CD. Higher-order cellular information processing with synthetic RNA devices. Science, 2008, 322 5900 456-460.

[23]

Basu S, Mehreja R, Thiberge S, Chen M-T, Weiss R. Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci U S A, 2004, 101 17 6355-6360.

[24]

Hooshangi S, Thiberge S, Weiss R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci U S A, 2005, 102 10 3581-3586.

[25]

Sohka T, Heins RA, Phelan RM, Greisler JM, Townsend CA, Ostermeier M. An externally tunable bacterial band-pass filter. Proc Natl Acad Sci U S A, 2009, 106 25 10135-10140.

[26]

Church GM, Elowitz MB, Smolke CD, Voigt CA, Weiss R. Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol, 2014, 15 4 289-94.

[27]

Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat Rev Genet, 2010, 11 5 367-379.

[28]

Ruder WC, Lu T, Collins JJ. Synthetic biology moving into the clinic. Science, 2011, 333 6047 1248-1252.

[29]

Weber W, Fussenegger M. Emerging biomedical applications of synthetic biology. Nat Rev Genet, 2011, 13 1 21-35.

[30]

Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009, 6 5 343-345.

[31]

Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008, 3 11 e3647.

[32]

Zhang Y, Werling U, Edelmann W. SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res, 2012, 40 8 e55-e55.

[33]

Quan J, Tian J. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc, 2011, 6 2 242-251.

[34]

Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460 7257 894-898.

[35]

Ellis HM, Yu D, DiTizio T. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A, 2001, 98 12 6742-6746.

[36]

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013, 31 3 233-239.

[37]

Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31 7 397-405.

[38]

Slusarczyk AL, Lin A, Weiss R. Foundations for the design and implementation of synthetic genetic circuits. Nat Rev Genet, 2012, 13 6 406-420.

[39]

Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol, 2009, 27 10 946-950.

[40]

Hillson NJ, Rosengarten RD, Keasling JD. j5 DNA assembly design automation software. ACS Synth Biol, 2011, 1 1 14-21.

[41]

Lou C, Stanton B, Chen Y-J, Munsky B, Voigt CA. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol, 2012, 30 11 1137-1142.

[42]

Smolke CD. Building outside of the box: iGEM and the BioBricks Foundation. Nat Biotechnol, 2009, 27 12 1099-1102.

[43]

Chuang JS. Engineering multicellular traits in synthetic microbial populations. Curr Opin Chem Biol, 2012, 16 3 370-378.

[44]

Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol, 2008, 26 9 483-489.

[45]

Pai A, Tanouchi Y, Collins CH, You L. Engineering multicellular systems by cell–cell communication. Curr Opin Biotechnol, 2009, 20 4 461-470.

[46]

Payne S, You L. Engineered cell–cell communication and its applications. Adv Biochem Eng Biotechnol, 2013, 146: 97-121.

[47]

Tsao C-Y, Quan DN, Bentley WE. Development of the quorum sensing biotechnological toolbox. Curr Opin Chem Eng, 2012, 1 4 396-402.

[48]

Teuscher C, Grecu C, Lu T, Weiss R. Challenges and promises of nano and bio communication networks. Networks on Chip (NoCS), 2011 Fifth IEEE/ACM International Symposium on, 2011, Pittsburgh: IEEE, 247-254.

[49]

Liu C, Fu X, Liu L, Ren X, Chau CK, Li S, Xiang L, Zeng H, Chen G, Tang L-H. Sequential establishment of stripe patterns in an expanding cell population. Science, 2011, 334 6053 238-241.

[50]

Brenner K, Karig DK, Weiss R, Arnold FH. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci U S A, 2007, 104 44 17300-17304.

[51]

Weber W, Daoud-El Baba M, Fussenegger M. Synthetic ecosystems based on airborne inter- and intra-kingdom communication. Proc Natl Acad Sci U S A, 2007, 104 25 10435-10440.

[52]

Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L. A synthetic Escherichia coli predator–prey ecosystem. Mol Syst Biol, 2008, 4: 187.

[53]

O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol, 2000, 54 1 49-79.

[54]

Stoodley P, Sauer K, Davies D, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol, 2002, 56 1 187-209.

[55]

Structure, function and diversity of the healthy human microbiome Nature 2012,486(7402):207–214.

[56]

Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet, 2012, 13 4 260-270.

[57]

Costerton J, Stewart PS, Greenberg E. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284 5418 1318-1322.

[58]

Stewart PS, William Costerton J. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358 9276 135-138.

[59]

Koizumi S, Endo T, Tabata K, Ozaki A. Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat Biotechnol, 1998, 16 9 847-850.

[60]

Minty JJ, Singer ME, Scholz SA, Bae C-H, Ahn J-H, Foster CE, Liao JC, Lin XN. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci U S A, 2013, 110 36 14592-14597.

[61]

Chen M-T, Weiss R. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat Biotechnol, 2005, 23 12 1551-1555.

[62]

Williams TC, Nielsen LK, Vickers CE. Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae. ACS Synth Biol, 2013, 2 3 136-149.

[63]

Bassler BL, Losick R. Bacterially speaking. Cell, 2006, 125 2 237-246.

[64]

Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol, 2005, 21: 319-346.

[65]

Engebrecht J, Nealson K, Silverman M. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell, 1983, 32 3 773-781.

[66]

Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton J, Greenberg E. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280 5361 295-298.

[67]

De Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun, 2000, 68 9 4839-4849.

[68]

Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol, 1995, 17 2 333-343.

[69]

Thomson N, Crow M, McGowan S, Cox A, Salmond G. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol, 2000, 36 3 539-556.

[70]

Kleerebezem M. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides, 2004, 25 9 1405-1414.

[71]

Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet, 2001, 35 1 439-468.

[72]

Thiel V, Kunze B, Verma P, Wagner‐Döbler I, Schulz S. New structural variants of homoserine lactones in bacteria. Chem Bio Chem, 2009, 10 11 1861-1868.

[73]

Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol, 1994, 176 2 269.

[74]

Nealson K, Hastings JW. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev, 1979, 43 4 496.

[75]

Pesci EC, Pearson JP, Seed PC, Iglewski BH. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol, 1997, 179 10 3127-3132.

[76]

Welch M, Todd DE, Whitehead NA, McGowan SJ, Bycroft BW, Salmond GP. N‐acyl homoserine lactone binding to the CarR receptor determines quorum‐sensing specificity in Erwinia. EMBO J, 2000, 19 4 631-641.

[77]

Minogue TD, Trebra MW, Bernhard F, Bodman SB. The autoregulatory role of EsaR, a quorum‐sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol Microbiol, 2002, 44 6 1625-1635.

[78]

Novick RP, Geisinger E. Quorum sensing in Staphylococci. Annu Rev Genet, 2008, 42: 541-564.

[79]

Hancock LE, Perego M. The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol, 2004, 186 17 5629-5639.

[80]

Pestova E, Håvarstein L, Morrison D. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto‐induced peptide pheromone and a two‐component regulatory system. Mol Microbiol, 1996, 21 4 853-862.

[81]

Winzer K, HARDIE K, Williams P. LuxS and autoinducer-2: their contribution to quorum. Adv Appl Microbiol, 2003, 53: 291.

[82]

Pereira CS, Thompson JA, Xavier KB. AI‐2‐mediated signalling in bacteria. FEMS Microbiol Rev, 2013, 37 2 156-181.

[83]

Prindle A, Samayoa P, Razinkov I, Danino T, Tsimring LS, Hasty J. A sensing array of radically coupled genetic ‘biopixels’. Nature, 2012, 481 7379 39-44.

[84]

Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginos a. Proc Natl Acad Sci U S A, 1999, 96 20 11229-11234.

[85]

Ryan RP, Dow JM. Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol, 2011, 19 3 145-152.

[86]

Holden MT, Ram Chhabra S, De Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D. Quorum‐sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram‐negative bacteria. Mol Microbiol, 1999, 33 6 1254-1266.

[87]

Tommonaro G, Abbamondi GR, Iodice C, Tait K, De Rosa S. Diketopiperazines produced by the halophilic archaeon, Haloterrigena hispanica, activate AHL bioreporters. Microb Ecol, 2012, 63 3 490-495.

[88]

Flavier AB, Clough SJ, Schell MA, Denny TP. Identification of 3‐hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol, 1997, 26 2 251-259.

[89]

Chen H, Fujita M, Feng Q, Clardy J, Fink GR. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A, 2004, 101 14 5048-5052.

[90]

Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev, 2010, 34 4 426-444.

[91]

Smith R, Tan C, Srimani JK, Pai A, Riccione KA, Song H, You L. Programmed Allee effect in bacteria causes a tradeoff between population spread and survival. Proc Natl Acad Sci U S A, 2014, 111 5 1969-1974.

[92]

Stephens PA, Sutherland WJ, Freckleton RP. What is the Allee effect?. Oikos, 1999, 87: 185-190.

[93]

Shapiro JA. Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol, 1998, 52 1 81-104.

[94]

Parsek MR, Greenberg E. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol, 2005, 13 1 27-33.

[95]

Gurdon J, Bourillot P-Y. Morphogen gradient interpretation. Nature, 2001, 413 6858 797-803.

[96]

Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol, 1969, 25 1 1-47.

[97]

Payne S, Li B, Cao Y, Schaeffer D, Ryser MD, You L. Temporal control of self‐organized pattern formation without morphogen gradients in bacteria. Mol Syst Biol, 2014, 9: 697.

[98]

Turing AM. The chemical basis of morphogenesis. Phil Trans R Soc Lond B, 1952, 237 641 37-72.

[99]

Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, Marcotte EM, Voigt CA, Ellington AD. A synthetic genetic edge detection program. Cell, 2009, 137 7 1272-1281.

[100]

Gambetta GA, Lagarias JC. Genetic engineering of phytochrome biosynthesis in bacteria. Proc Natl Acad Sci U S A, 2001, 98 19 10566-10571.

[101]

Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM. Synthetic biology: engineering Escherichia coli to see light. Nature, 2005, 438 7067 441-442.

[102]

Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol, 2012, 10 8 538-550.

[103]

Hong SH, Hegde M, Kim J, Wang X, Jayaraman A, Wood TK. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat Commun, 2012, 3: 613.

[104]

Lu T, Hasty J, Wolynes PG. Effective temperature in stochastic kinetics and gene networks. Biophys J, 2006, 91 1 84-94.

[105]

Lu T, Shen T, Zong C, Hasty J, Wolynes PG. Statistics of cellular signal transduction as a race to the nucleus by multiple random walkers in compartment/phosphorylation space. Proc Natl Acad Sci U S A, 2006, 103 45 16752-16757.

[106]

Lu T, Shen T, Bennett MR, Wolynes PG, Hasty J. Phenotypic variability of growing cellular populations. Proc Natl Acad Sci U S A, 2007, 104 48 18982-18987.

[107]

Mao J, Blanchard AE, Lu T. Slow and steady wins the race: a bacterial exploitative competition strategy in fluctuating environments. ACS Synth Biol, 2014

[108]

Song H, Payne S, Gray M, You L. Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol, 2009, 5 12 929-935.

[109]

Prindle A, Selimkhanov J, Li H, Razinkov I, Tsimring LS, Hasty J. Rapid and tunable post-translational coupling of genetic circuits. Nature, 2014, 508 7496 387-91.

[110]

Qi H, Blanchard A, Lu T. Engineered genetic information processing circuits. Wiley Interdiscip Rev Syst Biol Med, 2013, 5 3 273-287.

[111]

Tamsir A, Tabor JJ, Voigt CA. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature, 2011, 469 7329 212-215.

[112]

Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H, Leong SSJ, Poh CL, Chang MW. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol, 2011, 7: 521.

[113]

Hwang IY, Tan MH, Koh E, Ho CL, Poh CL, Chang MW. Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol, 2013, 3 4 228-237.

[114]

Duan F, March JC. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci U S A, 2010, 107 25 11260-11264.

[115]

Chen AY, Deng Z, Billings AN, Seker UO, Lu MY, Citorik RJ, Zakeri B, Lu TK. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater, 2014, 13: 515-523.

[116]

Nocadello S, Swennen EF. The new pLAI (lux regulon based auto-inducible) expression system for recombinant protein production in Escherichia coli. Microb Cell Fact, 2012, 11 1 1-10.

[117]

Tsao C-Y, Hooshangi S, Wu H-C, Valdes JJ, Bentley WE. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli. Metab Eng, 2010, 12 3 291-297.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/