Programming the group behaviors of bacterial communities with synthetic cellular communication

Wentao Kong, Venhar Celik, Chen Liao, Qiang Hua, Ting Lu

Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 24.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 24. DOI: 10.1186/s40643-014-0024-6
Review

Programming the group behaviors of bacterial communities with synthetic cellular communication

Author information +
History +

Abstract

Synthetic biology is a newly emerged research discipline that focuses on the engineering of novel cellular behaviors and functionalities through the creation of artificial gene circuits. One important class of synthetic circuits currently under active development concerns the programming of bacterial cellular communication and collective population-scale behaviors. Because of the ubiquity of cell-cell interactions within bacterial communities, having an ability of engineering these circuits is vital to programming robust cellular behaviors. Here, we highlight recent advances in communication-based synthetic gene circuits by first discussing natural communication systems and then surveying various functional engineered circuits, including those for population density control, temporal synchronization, spatial organization, and ecosystem formation. We conclude by summarizing recent advances, outlining existing challenges, and discussing potential applications and future opportunities.

Keywords

Synthetic biology / Gene circuits / Bacterial communities / Cellular communication / Collective behaviors / Dynamics

Cite this article

Download citation ▾
Wentao Kong, Venhar Celik, Chen Liao, Qiang Hua, Ting Lu. Programming the group behaviors of bacterial communities with synthetic cellular communication. Bioresources and Bioprocessing, 2014, 1(1): 24 https://doi.org/10.1186/s40643-014-0024-6

References

[1.]
Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403 6767 335-338.
CrossRef Google scholar
[2.]
Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403 6767 339-342.
CrossRef Google scholar
[3.]
Atkinson MR, Savageau MA, Myers JT, Ninfa AJ. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell, 2003, 113 5 597-607.
CrossRef Google scholar
[4.]
Kramer BP, Viretta AU, Daoud-El Baba M, Aubel D, Weber W, Fussenegger M. An engineered epigenetic transgene switch in mammalian cells. Nat Biotechnol, 2004, 22 7 867-870.
CrossRef Google scholar
[5.]
Bayer TS, Smolke CD. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol, 2005, 123 3 337-343.
CrossRef Google scholar
[6.]
Deans TL, Cantor CR, Collins JJ. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell, 2007, 130 2 363-372.
CrossRef Google scholar
[7.]
Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ. Synthetic gene networks that count. Science, 2009, 324 5931 1199-1202.
CrossRef Google scholar
[8.]
Ellis T, Wang X, Collins JJ. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol, 2009, 27 5 465-471.
CrossRef Google scholar
[9.]
Wu M, Su R-Q, Li X, Ellis T, Lai Y-C, Wang X. Engineering of regulated stochastic cell fate determination. Proc Natl Acad Sci U S A, 2013, 110 26 10610-10615.
CrossRef Google scholar
[10.]
Fung E, Wong WW, Suen JK, Bulter T, S-g L, Liao JC. A synthetic gene–metabolic oscillator. Nature, 2005, 435 7038 118-122.
CrossRef Google scholar
[11.]
Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature, 2008, 456 7221 516-519.
CrossRef Google scholar
[12.]
Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M. A tunable synthetic mammalian oscillator. Nature, 2009, 457 7227 309-312.
CrossRef Google scholar
[13.]
Danino T, Mondragón-Palomino O, Tsimring L, Hasty J. A synchronized quorum of genetic clocks. Nature, 2010, 463 7279 326-330.
CrossRef Google scholar
[14.]
Ham TS, Lee SK, Keasling JD, Arkin AP. Design and construction of a double inversion recombination switch for heritable sequential genetic memory. PLoS One, 2008, 3 7 e2815.
CrossRef Google scholar
[15.]
Ajo-Franklin CM, Drubin DA, Eskin JA, Gee EP, Landgraf D, Phillips I, Silver PA. Rational design of memory in eukaryotic cells. Genes Dev, 2007, 21 18 2271-2276.
CrossRef Google scholar
[16.]
Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R. A synthetic multicellular system for programmed pattern formation. Nature, 2005, 434 7037 1130-1134.
CrossRef Google scholar
[17.]
Kobayashi H, Kærn M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ. Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A, 2004, 101 22 8414-8419.
CrossRef Google scholar
[18.]
You L, Cox RS, Weiss R, Arnold FH. Programmed population control by cell–cell communication and regulated killing. Nature, 2004, 428 6985 868-871.
CrossRef Google scholar
[19.]
Guet CC, Elowitz MB, Hsing W, Leibler S. Combinatorial synthesis of genetic networks. Science, 2002, 296 5572 1466-1470.
CrossRef Google scholar
[20.]
Rackham O, Chin JW. Cellular logic with orthogonal ribosomes. J Am Chem Soc, 2005, 127 50 17584-17585.
CrossRef Google scholar
[21.]
Anderson JC, Voigt CA, Arkin AP. Environmental signal integration by a modular AND gate. Mol Syst Biol, 2007, 3: 133.
CrossRef Google scholar
[22.]
Win MN, Smolke CD. Higher-order cellular information processing with synthetic RNA devices. Science, 2008, 322 5900 456-460.
CrossRef Google scholar
[23.]
Basu S, Mehreja R, Thiberge S, Chen M-T, Weiss R. Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci U S A, 2004, 101 17 6355-6360.
CrossRef Google scholar
[24.]
Hooshangi S, Thiberge S, Weiss R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci U S A, 2005, 102 10 3581-3586.
CrossRef Google scholar
[25.]
Sohka T, Heins RA, Phelan RM, Greisler JM, Townsend CA, Ostermeier M. An externally tunable bacterial band-pass filter. Proc Natl Acad Sci U S A, 2009, 106 25 10135-10140.
CrossRef Google scholar
[26.]
Church GM, Elowitz MB, Smolke CD, Voigt CA, Weiss R. Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol, 2014, 15 4 289-94.
CrossRef Google scholar
[27.]
Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat Rev Genet, 2010, 11 5 367-379.
CrossRef Google scholar
[28.]
Ruder WC, Lu T, Collins JJ. Synthetic biology moving into the clinic. Science, 2011, 333 6047 1248-1252.
CrossRef Google scholar
[29.]
Weber W, Fussenegger M. Emerging biomedical applications of synthetic biology. Nat Rev Genet, 2011, 13 1 21-35.
CrossRef Google scholar
[30.]
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009, 6 5 343-345.
CrossRef Google scholar
[31.]
Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008, 3 11 e3647.
CrossRef Google scholar
[32.]
Zhang Y, Werling U, Edelmann W. SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res, 2012, 40 8 e55-e55.
CrossRef Google scholar
[33.]
Quan J, Tian J. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc, 2011, 6 2 242-251.
CrossRef Google scholar
[34.]
Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460 7257 894-898.
CrossRef Google scholar
[35.]
Ellis HM, Yu D, DiTizio T. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A, 2001, 98 12 6742-6746.
CrossRef Google scholar
[36.]
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013, 31 3 233-239.
CrossRef Google scholar
[37.]
Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31 7 397-405.
CrossRef Google scholar
[38.]
Slusarczyk AL, Lin A, Weiss R. Foundations for the design and implementation of synthetic genetic circuits. Nat Rev Genet, 2012, 13 6 406-420.
CrossRef Google scholar
[39.]
Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol, 2009, 27 10 946-950.
CrossRef Google scholar
[40.]
Hillson NJ, Rosengarten RD, Keasling JD. j5 DNA assembly design automation software. ACS Synth Biol, 2011, 1 1 14-21.
CrossRef Google scholar
[41.]
Lou C, Stanton B, Chen Y-J, Munsky B, Voigt CA. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol, 2012, 30 11 1137-1142.
CrossRef Google scholar
[42.]
Smolke CD. Building outside of the box: iGEM and the BioBricks Foundation. Nat Biotechnol, 2009, 27 12 1099-1102.
CrossRef Google scholar
[43.]
Chuang JS. Engineering multicellular traits in synthetic microbial populations. Curr Opin Chem Biol, 2012, 16 3 370-378.
CrossRef Google scholar
[44.]
Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol, 2008, 26 9 483-489.
CrossRef Google scholar
[45.]
Pai A, Tanouchi Y, Collins CH, You L. Engineering multicellular systems by cell–cell communication. Curr Opin Biotechnol, 2009, 20 4 461-470.
CrossRef Google scholar
[46.]
Payne S, You L. Engineered cell–cell communication and its applications. Adv Biochem Eng Biotechnol, 2013, 146: 97-121.
[47.]
Tsao C-Y, Quan DN, Bentley WE. Development of the quorum sensing biotechnological toolbox. Curr Opin Chem Eng, 2012, 1 4 396-402.
CrossRef Google scholar
[48.]
Teuscher C, Grecu C, Lu T, Weiss R. Challenges and promises of nano and bio communication networks. Networks on Chip (NoCS), 2011 Fifth IEEE/ACM International Symposium on, 2011, Pittsburgh: IEEE, 247-254.
[49.]
Liu C, Fu X, Liu L, Ren X, Chau CK, Li S, Xiang L, Zeng H, Chen G, Tang L-H. Sequential establishment of stripe patterns in an expanding cell population. Science, 2011, 334 6053 238-241.
CrossRef Google scholar
[50.]
Brenner K, Karig DK, Weiss R, Arnold FH. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci U S A, 2007, 104 44 17300-17304.
CrossRef Google scholar
[51.]
Weber W, Daoud-El Baba M, Fussenegger M. Synthetic ecosystems based on airborne inter- and intra-kingdom communication. Proc Natl Acad Sci U S A, 2007, 104 25 10435-10440.
CrossRef Google scholar
[52.]
Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L. A synthetic Escherichia coli predator–prey ecosystem. Mol Syst Biol, 2008, 4: 187.
CrossRef Google scholar
[53.]
O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol, 2000, 54 1 49-79.
CrossRef Google scholar
[54.]
Stoodley P, Sauer K, Davies D, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol, 2002, 56 1 187-209.
CrossRef Google scholar
[55.]
Structure, function and diversity of the healthy human microbiome Nature 2012,486(7402):207–214.
[56.]
Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet, 2012, 13 4 260-270.
[57.]
Costerton J, Stewart PS, Greenberg E. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284 5418 1318-1322.
CrossRef Google scholar
[58.]
Stewart PS, William Costerton J. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358 9276 135-138.
CrossRef Google scholar
[59.]
Koizumi S, Endo T, Tabata K, Ozaki A. Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat Biotechnol, 1998, 16 9 847-850.
CrossRef Google scholar
[60.]
Minty JJ, Singer ME, Scholz SA, Bae C-H, Ahn J-H, Foster CE, Liao JC, Lin XN. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci U S A, 2013, 110 36 14592-14597.
CrossRef Google scholar
[61.]
Chen M-T, Weiss R. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat Biotechnol, 2005, 23 12 1551-1555.
CrossRef Google scholar
[62.]
Williams TC, Nielsen LK, Vickers CE. Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae. ACS Synth Biol, 2013, 2 3 136-149.
CrossRef Google scholar
[63.]
Bassler BL, Losick R. Bacterially speaking. Cell, 2006, 125 2 237-246.
CrossRef Google scholar
[64.]
Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol, 2005, 21: 319-346.
CrossRef Google scholar
[65.]
Engebrecht J, Nealson K, Silverman M. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell, 1983, 32 3 773-781.
CrossRef Google scholar
[66.]
Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton J, Greenberg E. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280 5361 295-298.
CrossRef Google scholar
[67.]
De Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun, 2000, 68 9 4839-4849.
CrossRef Google scholar
[68.]
Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol, 1995, 17 2 333-343.
CrossRef Google scholar
[69.]
Thomson N, Crow M, McGowan S, Cox A, Salmond G. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol, 2000, 36 3 539-556.
CrossRef Google scholar
[70.]
Kleerebezem M. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides, 2004, 25 9 1405-1414.
CrossRef Google scholar
[71.]
Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet, 2001, 35 1 439-468.
CrossRef Google scholar
[72.]
Thiel V, Kunze B, Verma P, Wagner‐Döbler I, Schulz S. New structural variants of homoserine lactones in bacteria. Chem Bio Chem, 2009, 10 11 1861-1868.
CrossRef Google scholar
[73.]
Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol, 1994, 176 2 269.
[74.]
Nealson K, Hastings JW. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev, 1979, 43 4 496.
[75.]
Pesci EC, Pearson JP, Seed PC, Iglewski BH. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol, 1997, 179 10 3127-3132.
[76.]
Welch M, Todd DE, Whitehead NA, McGowan SJ, Bycroft BW, Salmond GP. N‐acyl homoserine lactone binding to the CarR receptor determines quorum‐sensing specificity in Erwinia. EMBO J, 2000, 19 4 631-641.
CrossRef Google scholar
[77.]
Minogue TD, Trebra MW, Bernhard F, Bodman SB. The autoregulatory role of EsaR, a quorum‐sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol Microbiol, 2002, 44 6 1625-1635.
CrossRef Google scholar
[78.]
Novick RP, Geisinger E. Quorum sensing in Staphylococci. Annu Rev Genet, 2008, 42: 541-564.
CrossRef Google scholar
[79.]
Hancock LE, Perego M. The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol, 2004, 186 17 5629-5639.
CrossRef Google scholar
[80.]
Pestova E, Håvarstein L, Morrison D. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto‐induced peptide pheromone and a two‐component regulatory system. Mol Microbiol, 1996, 21 4 853-862.
CrossRef Google scholar
[81.]
Winzer K, HARDIE K, Williams P. LuxS and autoinducer-2: their contribution to quorum. Adv Appl Microbiol, 2003, 53: 291.
CrossRef Google scholar
[82.]
Pereira CS, Thompson JA, Xavier KB. AI‐2‐mediated signalling in bacteria. FEMS Microbiol Rev, 2013, 37 2 156-181.
CrossRef Google scholar
[83.]
Prindle A, Samayoa P, Razinkov I, Danino T, Tsimring LS, Hasty J. A sensing array of radically coupled genetic ‘biopixels’. Nature, 2012, 481 7379 39-44.
CrossRef Google scholar
[84.]
Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginos a. Proc Natl Acad Sci U S A, 1999, 96 20 11229-11234.
CrossRef Google scholar
[85.]
Ryan RP, Dow JM. Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol, 2011, 19 3 145-152.
CrossRef Google scholar
[86.]
Holden MT, Ram Chhabra S, De Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D. Quorum‐sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram‐negative bacteria. Mol Microbiol, 1999, 33 6 1254-1266.
CrossRef Google scholar
[87.]
Tommonaro G, Abbamondi GR, Iodice C, Tait K, De Rosa S. Diketopiperazines produced by the halophilic archaeon, Haloterrigena hispanica, activate AHL bioreporters. Microb Ecol, 2012, 63 3 490-495.
CrossRef Google scholar
[88.]
Flavier AB, Clough SJ, Schell MA, Denny TP. Identification of 3‐hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol, 1997, 26 2 251-259.
CrossRef Google scholar
[89.]
Chen H, Fujita M, Feng Q, Clardy J, Fink GR. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A, 2004, 101 14 5048-5052.
CrossRef Google scholar
[90.]
Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev, 2010, 34 4 426-444.
CrossRef Google scholar
[91.]
Smith R, Tan C, Srimani JK, Pai A, Riccione KA, Song H, You L. Programmed Allee effect in bacteria causes a tradeoff between population spread and survival. Proc Natl Acad Sci U S A, 2014, 111 5 1969-1974.
CrossRef Google scholar
[92.]
Stephens PA, Sutherland WJ, Freckleton RP. What is the Allee effect?. Oikos, 1999, 87: 185-190.
CrossRef Google scholar
[93.]
Shapiro JA. Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol, 1998, 52 1 81-104.
CrossRef Google scholar
[94.]
Parsek MR, Greenberg E. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol, 2005, 13 1 27-33.
CrossRef Google scholar
[95.]
Gurdon J, Bourillot P-Y. Morphogen gradient interpretation. Nature, 2001, 413 6858 797-803.
CrossRef Google scholar
[96.]
Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol, 1969, 25 1 1-47.
CrossRef Google scholar
[97.]
Payne S, Li B, Cao Y, Schaeffer D, Ryser MD, You L. Temporal control of self‐organized pattern formation without morphogen gradients in bacteria. Mol Syst Biol, 2014, 9: 697.
CrossRef Google scholar
[98.]
Turing AM. The chemical basis of morphogenesis. Phil Trans R Soc Lond B, 1952, 237 641 37-72.
CrossRef Google scholar
[99.]
Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, Marcotte EM, Voigt CA, Ellington AD. A synthetic genetic edge detection program. Cell, 2009, 137 7 1272-1281.
CrossRef Google scholar
[100.]
Gambetta GA, Lagarias JC. Genetic engineering of phytochrome biosynthesis in bacteria. Proc Natl Acad Sci U S A, 2001, 98 19 10566-10571.
CrossRef Google scholar
[101.]
Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM. Synthetic biology: engineering Escherichia coli to see light. Nature, 2005, 438 7067 441-442.
CrossRef Google scholar
[102.]
Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol, 2012, 10 8 538-550.
CrossRef Google scholar
[103.]
Hong SH, Hegde M, Kim J, Wang X, Jayaraman A, Wood TK. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat Commun, 2012, 3: 613.
CrossRef Google scholar
[104.]
Lu T, Hasty J, Wolynes PG. Effective temperature in stochastic kinetics and gene networks. Biophys J, 2006, 91 1 84-94.
CrossRef Google scholar
[105.]
Lu T, Shen T, Zong C, Hasty J, Wolynes PG. Statistics of cellular signal transduction as a race to the nucleus by multiple random walkers in compartment/phosphorylation space. Proc Natl Acad Sci U S A, 2006, 103 45 16752-16757.
CrossRef Google scholar
[106.]
Lu T, Shen T, Bennett MR, Wolynes PG, Hasty J. Phenotypic variability of growing cellular populations. Proc Natl Acad Sci U S A, 2007, 104 48 18982-18987.
CrossRef Google scholar
[107.]
Mao J, Blanchard AE, Lu T. Slow and steady wins the race: a bacterial exploitative competition strategy in fluctuating environments. ACS Synth Biol, 2014
[108.]
Song H, Payne S, Gray M, You L. Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol, 2009, 5 12 929-935.
CrossRef Google scholar
[109.]
Prindle A, Selimkhanov J, Li H, Razinkov I, Tsimring LS, Hasty J. Rapid and tunable post-translational coupling of genetic circuits. Nature, 2014, 508 7496 387-91.
CrossRef Google scholar
[110.]
Qi H, Blanchard A, Lu T. Engineered genetic information processing circuits. Wiley Interdiscip Rev Syst Biol Med, 2013, 5 3 273-287.
CrossRef Google scholar
[111.]
Tamsir A, Tabor JJ, Voigt CA. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature, 2011, 469 7329 212-215.
CrossRef Google scholar
[112.]
Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H, Leong SSJ, Poh CL, Chang MW. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol, 2011, 7: 521.
CrossRef Google scholar
[113.]
Hwang IY, Tan MH, Koh E, Ho CL, Poh CL, Chang MW. Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol, 2013, 3 4 228-237.
CrossRef Google scholar
[114.]
Duan F, March JC. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci U S A, 2010, 107 25 11260-11264.
CrossRef Google scholar
[115.]
Chen AY, Deng Z, Billings AN, Seker UO, Lu MY, Citorik RJ, Zakeri B, Lu TK. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater, 2014, 13: 515-523.
CrossRef Google scholar
[116.]
Nocadello S, Swennen EF. The new pLAI (lux regulon based auto-inducible) expression system for recombinant protein production in Escherichia coli. Microb Cell Fact, 2012, 11 1 1-10.
CrossRef Google scholar
[117.]
Tsao C-Y, Hooshangi S, Wu H-C, Valdes JJ, Bentley WE. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli. Metab Eng, 2010, 12 3 291-297.
CrossRef Google scholar

12

Accesses

19

Citations

9

Altmetric

Detail

Sections
Recommended

/